## Digital Fiber Sensor <br> 



> Superior performance and advanced user-friendly multi-functionality enables expert usage on the very first day
http://www.fiber-sensor.com
UL 61010C-1 compatible, Passed the UL 991 Environment Test based on SEMI S2-0200.
[Category applicable for semiconductor manufacturing: TWW2, Process Equipment]
[Applicable standards: UL 61010C-1]
[Additional test / evaluation standards as per intended use: UL 991, SEMI S2-0200]

Fiber The lens concentrates the light, greatly increasing emitting efficiency.


* Passed the UL 991 Environment Test


Enhanced worksite-friendly installability
Our new fiber cutter utilizes a specially developed two-in-one fiber attachment that now makes it possible to cut two fibers simultaneously to exactly the same length. Also, since the fibers can be attached to the amplifier while being fixed in position in the two-in-one fiber attachment, sensitivity changes due to variation in the amount of fiber insertion do not occur.


## Stable long-term sensing

The newly developed four-chemical emitting element that uses the FX-301 (red LED type) suppresses changes over long periods of time as much as possible, so that a stable light emitting level is maintained. There is very little element deterioration so that stable and accurate sensing can be maintained over long periods.

## Selectable response time

We offer 4 selectable levels to correspond with various applications: the response time $150 \mu$ s FAST mode, the LONG mode, perfect for adverse environments, and the S-D mode, especially made for minute detection.


## Easy maintenance, as main

 and sub units are identicalBoth main and sub units utilize the same amplifier body. This feature allows for easy mounting in the side-by-side configuration. The main and sub unit functions are distinguished only by the proper use of 3 -core main cable and the 1 -core sub cable. Moreover, by utilizing the same body for both main and sub units, inventory management and maintenance is simplified.


Wiring- and labor-saving design allows side-by-side configuration for up to sixteen units

Up to sixteen amplifiers can be connected in a side-by-side configuration. As the sub cable contains only one output line, a great amount of wiring and space can be saved. Also, special 'sliding' connectors have been provided for all main and sub cables, which can be detached merely by releasing the lock and pulling directly back, without having to slide the amplifier body to the side. Using this connector system, only a minimal amount of space is required for regular maintenance.


Environmentally friendly packaging ECO
With regard to effects on the environment, we only utilize the simplest of packaging methods greatly contributing to the reduction in wastes generated by your worksite.
Also, the bags are made of polyethylene, a substance that doesn't give off polluting gases when burned.


## Even beginners can quickly learn how to use the MODE NAVI

MODE NAVI uses six indicators to display the amplifier's basic operations. The current operating mode can be confirmed at a glance, so even a first time user can easily operate the amplifier without becoming confused.


The use of only two switches makes for very simple operations
Only two switches, the large jog switch and the large MODE key, are required for operation. Depressing the large MODE key sets the 'mode selection' and 'mode cancel' functions. The large jog switch is used to select from the detailed functions available within each mode, as well as to change numerical values after the mode has been chosen.


## FX-301

## 4 types of light sources available

In addition to our red LED (four-chemical emitting element) type, the blue, green, and infrared LED types are also provided to correspond to your specific application.


Optical communication function lets multiple sensors be adjusted all at once
The optical communication function allows the data that is currently set to be copied and saved all at once for all amplifiers connected together from the right side. This greatly reduces troublesome setup tasks and makes setup much smoother.


## Equipped with each type of timer

These sensors are equipped with 3 types of timers, ON-delay, OFF-delay, and ONE SHOT, for compatibility to variegated environments.

## ■ ON-delay timer

This function is useful for sensing only objects taking a long time travel.

- OFF-delay timer

This function is useful when the connected device has a slow response time.
■ ONE SHOT timer
This function is useful when the input specifications of the connected device require a signal of fixed width.


## Easy code input setting

Every function can be directly set merely by the input of a four digit code (numbers) from the code table. This convenient feature is easy to set up.
In the event that settings are accidentally changed at the operating site, merely entering the correct code can restore the original settings. This results in easy and quick maintenance.


| Direct code | First digit |  | Second digit |  | Third digit |  | Fourth digit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Response time | Hysteresis | L/D ON | Display mode | Adjust lock | Timer | Timer setting |
| II | STD | H-02 (standard) | L-ON | digit | ON | OFF | OFF |
| ! | STD | H-03 (large) | L-ON | \% | ON | OFF-delay | 1 ms |
| $?$ | STD | H-01 (small) | L-ON | Peak hold | ON | ON-delay | 3 ms |
| $\exists$ | LONG | H-02 (standard) | L-ON | Bottom hold | ON | ONE SHOT | 5 ms |
| 4 | LONG | H-03 (large) | D-ON | digit | OFF | OFF | 10 ms |
| 5 | LONG | H-01 (small) | D-ON | \% | OFF | OFF-delay | 30 ms |
| 5 | FAST | H-02 (standard) | D-ON | Peak hold | OFF | ON-delay | 50 ms |
| 1 | FAST | H-03 (large) | D-ON | Bottom hold | OFF | ONE SHOT | 100 ms |
| $\square$ | FAST | H-01 (small) |  |  |  |  | 300 ms |
| 9 | S-D | H-02 (standard) |  |  |  |  | 500 ms |

## Invertible digital display

The digital display can be inverted as per its orientation once mounted onto the amplifier.


## FX-301 series


'turn ON' status

## Selectable cable length ECO

Made available are 3 lengths, 1 m 3.281 ft , 2 m 6.562 ft , and 5 m 16.404 ft , to suit your application requirements. This helps reduce the waste caused by cutting cables and lightens the installation workload.


## Optional units for greater freedom and control when installing

Sensor-PLC connection system SC series Bank selection unit FX-CH series

This wire-saving system enables the collective connection of up to 16 I/O devices with an MIL connector. Scattered installation is also possible with the help of a sensor separate unit.
(Refer to p. $876 \sim$ for details)


Without directly manipulating the sensor itself, you can simultaneously switch up to 16 fiber sensors' settings using an external emitted signal. (Load and save)
※Also possible with the FX-301 series' databank function
(Refer to p. $144 \sim$ for details)


## APPLICATIONS

## Workpieces detection

This standard type of FX-301 using red light has a four-chemical emitting element for stable sensing over long periods.


## Sensing film meandering

Infrared LED type is ideal for sensing environments with light restrictions, such as places where light-sensitive film is being handled. (The emission peak wavelength: 940 nm 0.037 mil.) It includes full-auto teaching function which allows sensitivity to be set without stopping the workpiece line.


Sensing semi-transparent stickers
The blue LED type greatly reduces the dampening rate, making it ideal for delicate sensing.


## Detecting chip component

Because of low light intensity fluctuations when detecting minute moving objects, decrease the hysteresis in PRO mode and accurate sensing will be possible in highspeed mode. This method is optimal for chip component verification in taping equipment.


## Sensing register marks

The green LED type can accurately discriminate between red and yellow, that cannot be easily detected using red LED type.


Detecting register marks on a transparent sheet
When detecting registration marks on transparent film with a thru-beam type, the S-D (reduced light intensity) mode will enable minute light intensity fluctuation sensing.


FX-301

ORDER GUIDE

Amplifiers Quick-connection cable is not supplied with the amplifier. Please order it separately.


## Quick-connection cables Quick-connection cable is not supplied with the amplifier. Please order it separately.

| Type | Model No. |  | Description | Main cable <br> - CN-73-C |
| :---: | :---: | :---: | :---: | :---: |
| Main cable | CN-73-C1 | Length: $1 \mathrm{~m} \quad 3.281 \mathrm{ft}$ | $0.15 \mathrm{~mm}^{2} 3$-core cabtyre cable, with connector on one end Cable outer diameter: $\phi 3.0 \mathrm{~mm} \phi 0.118$ in |  |
|  | CN-73-C2 | Length: 2 mm 6.562 ft |  |  |
|  | CN-73-C5 | Length: 5 mm 16.404 ft |  |  |
| Sub cable | CN-71-C1 | Length: $1 \mathrm{~m} \quad 3.281 \mathrm{ft}$ | $0.15 \mathrm{~mm}^{2} 1$-core cabtyre cable, with connector on one end Cable outer diameter: $\phi 3.0 \mathrm{~mm} \phi 0.118$ in | Sub cable <br> - CN-71-C $\square$ |
|  | CN-71-C2 | Length: 2 m 6.562 ft |  |  |
|  | CN-71-C5 | Length: 5 mm 16.404 ft |  |  |

End plates End plates are not supplied with the amplifier. Please order separately when the amplifiers are mounted in cascade.
Appearance

## OPTIONS

| Designation | Model No. | Description |
| :--- | :--- | :--- |
| Amplifier mounting <br> bracket | MS-DIN-2 | Mounting bracket for amplifier |
|  | FX-MB1 | 10 sets of 2 communication window seals and 1 connector seal <br> Communication window seal: <br> lt prevents malfunction due to transmission signal from another <br> amplifier, as well as, prevents effect on another amplifier. <br> Connector seal: <br> lt prevents contact of any metal, etc., with the pins of the quick- <br> connection cable. |

## Amplifier mounting bracket



## Fiber amplifier protective seal

 - FX-MB1 Communicationwindow seal

## LIST OF FIBERS

Standard fibers [Thru-beam type (one pair set)]

| Type | Shape of fiber head ( mm in ) | Sensing range (mm in ) (Note 1) | $\square: \text { :LONG } \square: \text { :FAST }$ |  |  | Min. sensing object $\binom{$ under the optimum }{ condition (Note 2) } |  | $\begin{aligned} & \text { Allowable } \\ & \text { bending } \\ & \text { radius } \end{aligned}$ | Model No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infraed LED |  |  |  |  |
|  |  |  | $\begin{aligned} & 5,400212.2988 \\ & 2,70000.099 \\ & 1,90074.803 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2,800110.236 \\ & 1,400 \\ & 1,000359.18 \\ & 1,370 \end{aligned}$ | $\begin{aligned} & 2.40094 .488 \\ & 1,200077.244 \\ & 900 \\ & \text { 30.433 } \\ & \text { (Note 3) - } \end{aligned}$ | $\phi 0.4 \mathrm{~mm}$ <br> $\phi 0.016$ in <br> opaque object |  | R25 mm <br> R0.984 in | FT-FM10L |
|  | With lens$\phi 2.5$ <br> 0.098 |  |  | $\begin{gathered} 200 \\ 108.874 \\ 100 \\ 65 \\ 65959 \\ \\ \hline \end{gathered}$ | $\begin{array}{ll}155 & 6.102 \\ 75 & \\ 75 & 2.161 \\ 55 & \\ & - \\ & \\ & \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object |  |  | FT-SFM2L |
|  |  | 53020.866 40015.10043 .307 1807.087 | $\begin{aligned} & 220 \\ & \begin{array}{l} 20.661 \\ 1100 \\ 75 \\ 75.3 .353 \\ \hline \end{array} \end{aligned}$ | $\begin{array}{rr}110 & 4.31 \\ 55 \\ 50 & 1.65 \\ 40 & 1.575 \\ & - \\ & \end{array}$ | $\begin{array}{cc}100 & 3.937 \\ 50 & .969 \\ 30 & 1.181 \\ & - \\ & -\end{array}$ | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in opaque object |  |  | FT-B8 |
|  | $=\mathrm{M}$ |  | $\begin{aligned} & 200 \\ & \\ & 100874 \\ & 70 \\ & 70.89756 \\ & \hline \end{aligned}$ | $\begin{array}{ll} 100 & 3.937 \\ 50.1 .69 \\ 35 & 1.378 \\ 3 & \end{array}$ | $\begin{array}{ll} 90 & 3.543 \\ 45 & .1772 \\ 28 & 1.102 \\ & \\ \hline \end{array}$ | $\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { opaque object } \end{aligned}$ |  |  | FT-NB8 |
|  |  |  | $\begin{aligned} & 150 \quad 5.906 \\ & 75 \\ & 70.2953 \\ & 40 \quad .575 \end{aligned}$ | $\begin{array}{lll} 70 & 2.756 \\ 35 & 1.378 \\ 24 & 0.945 \\ \hline \end{array}$ | $\begin{array}{ccc} 50 & 1.969 \\ 25 & 0.984 \\ 18 & 0.709 \\ & - \end{array}$ | $\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { opaque object } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FT-FM2 |
|  |  |  |  |  |  |  |  | Fiber R25 mm <br> Sleeve <br> R10 mm <br> R0.394 in | FT-FM2S |
|  | Sleeve 40 mm 1.575 in | 280 40015.780 5.118 |  |  |  |  |  |  | FT-FM2S4 |
|  |  |  |  |  |  |  |  | R25 mm <br> R0.984 in | FT-T80 |
|  | $\longrightarrow \xrightarrow{\substack{\phi 2.5 \\ \phi 0.098}}$ |  |  |  |  |  |  |  | FT-SFM2 |
|  | Emifloull | 25096014.173 40027.559 4.961 | $\begin{aligned} & 140 \\ & \hline \\ & 70.512 \\ & 70 \\ & 40 \\ & \hline 1.575 \\ & \hline \end{aligned}$ | $\begin{array}{rl} 66 & 2.598 \\ 33 & 1.299 \\ 22 & 0.866 \\ & - \\ \hline \end{array}$ | $\begin{array}{ll} 45 & 1.772 \\ 220 & 0.866 \\ 17 & 0.669 \\ & - \end{array}$ | $\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { opaque object } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FT-N8 |
|  |  |  | $\begin{array}{ccc} 50 & 1.969 \\ 25 & 0.984 \\ 16 & 0.630 \\ \hline \end{array}$ | $\begin{array}{cc} \begin{array}{c} 24 \\ 120.945 \\ 12 \end{array} 0.072 \\ 8 & 0.315 \\ & 0 \end{array}$ | $\begin{array}{ccc} 16 & 0.630 \\ 8 & 0.315 \\ 5 & 0.197 \\ & & - \end{array}$ | $\phi 0.025 \mathrm{~mm}$ $\phi 0.0010$ in opaque object |  | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FT-NFM2 |
|  |  | $27010.630$ |  |  |  |  |  | Fiber R25 mm <br> R0.984 | FT-NFM2S |
|  | $\underset{\phi 0.88}{\longrightarrow} \underset{\phi 0.035}{\longrightarrow}$ |  |  |  |  |  |  | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \mathrm{R} 0.394 \mathrm{in} \end{aligned}$ | FT-NFM2S4 |
|  | $=\longrightarrow{ }^{\phi 0.5}{ }^{\phi 0.59}$ |  |  |  |  |  |  | $\begin{aligned} & \text { R25 mm } \\ & \text { R0.984 in } \end{aligned}$ | FT-SNFM2 |
| $\begin{aligned} & 3 \\ & 0 \\ & \text { 䛔 } \end{aligned}$ |  | $\begin{aligned} & 2309.055 \\ & 05020.866 \\ & 0.150 \\ & \hline \end{aligned}$ | $\begin{array}{ll} 85 & 3.346 \\ 42 & 1.654 \\ 28 & 1.102 \\ & - \\ \hline \end{array}$ | $\begin{array}{rr}44 & 1.732 \\ 22 & 0.866 \\ 16 & 0.630 \\ & - \\ & -\end{array}$ | $\begin{array}{ll} 32 & 1.260 \\ 16 & 0.630 \\ 12 & 0.472 \\ & \end{array}$ | $\begin{aligned} & \phi 0.04 \mathrm{~mm} \\ & \phi 0.0016 \text { in } \\ & \text { opaque object } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FT-R80 |
| $\begin{aligned} & \frac{3}{\lambda} \\ & \frac{0}{\lambda} \\ & \frac{\dot{d}}{i n} \end{aligned}$ | $\left(\frac{1}{3}\right.$ |  | $\begin{aligned} & 40015.748 \\ & 200 \\ & 13878 \\ & 130 \quad 5.118 \\ & \hline \end{aligned}$ | $\begin{aligned} & 200 \\ & 7.874 \\ & 100 \\ & 650.37 \\ & 65 \\ & \hline 2.559 \end{aligned}$ | $\begin{array}{ll} 150 & 5.906 \\ 75 & 2.53 \\ 40 & 1.575 \\ 40 \end{array}$ | $\begin{aligned} & \phi 0.05 \mathrm{~mm} \\ & \phi 0.0019 \text { in } \\ & \text { opaque object } \end{aligned}$ | $\begin{gathered} g \times 8 \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ | R25 mm <br> R0. 984 in | FT-V10 |
|  |  | $\begin{aligned} & 2007.87415 .748 \\ & 05.512 \\ & 0.756 \end{aligned}$ | $\begin{array}{ll} \hline 80 & 3.150 \\ 40 & 1.575 \\ 28 & 1.102 \\ & \\ \hline \end{array}$ | $\begin{array}{lll} 40 & 1.575 \\ 20 & 0.787 \\ 14 & 0.551 \\ & - \end{array}$ | $\begin{array}{ll} 30 & 1.181 \\ 15 & 0.591 \\ 12 & 0.472 \\ & \\ \hline \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object |  |  | FT-SFM2SV2 |
|  |  | $\begin{aligned} & 1807.087015 .354 \\ & 4.921 \\ & 480 \end{aligned}$ | $\begin{array}{cc} 50 & 1.969 \\ 25 & 0.984 \\ 16 & 0.630 \\ & - \end{array}$ | $\begin{array}{cc} 26 & 1.024 \\ 13 & 0.512 \\ 8 & 0.315 \\ & - \\ \hline \end{array}$ | $\begin{array}{ll} 44 & 1.732 \\ 22 & 0.866 \\ 15 & 0.591 \\ & \\ \hline \end{array}$ |  | $\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$ |  | FT-V22 |
|  |  | $\begin{aligned} & 1756.890 \\ & .150 \\ & .362 \\ & 663 \\ & \hline \end{aligned}$ | 28 1.102 <br> 14 0.551 <br> 10 0.394 <br>  - | $\begin{array}{ll} 14 & 0.551 \\ 7 & 0.276 \\ 5 & 0.197 \\ & \\ \hline \end{array}$ | $\begin{array}{cc} 10 & 0.394 \\ 5 & 0.197 \\ 3 & 0.1118 \\ & 0 \end{array}$ |  |  |  | FT-V41 |

Notes: 1) Please take care that the sensing range of the free-cut type fiber may be reduced by $20 \%$ max. depending upon how the fiber is cut. In addition, the infrared type is easily affected by humidity, so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate.
2) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.
3) Sensing range for a 2 m 6.562 ft long fiber. A 10 m 32.808 ft long fiber will cause damping of the beam and cannot be used.
4) The fiber cutter is not supplied as an accessory with FT-NB8 and FT-N8. Please order it separately.
FX－301

## LIST OF FIBERS

Sharp bending fibers／Flexible fibers［Thru－beam type（one pair set）］

| Type |  | Shape of fiber head （ mm in ） | Sensing range（mm in）（Note 1） |  | $\square$ ：STD $\square$ ：：SAST |  | $\begin{aligned} & \text { Min. sensing object } \\ & \left(\begin{array}{l} \text { (under the optimum } \\ \text { condition (Note 2) } \end{array}\right. \end{aligned}$ | Fiber cable length 8x：Freeout | $\begin{array}{\|l\|l\|} \hline \text { Allowable } \\ \text { bending } \\ \text { radius } \end{array}$ | Model No． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infrared LED |  |  |  |  |
|  |  |  |  | $3,500137.795$ $3,500137.795$ $3,500137.795$ $3,500137.795$ （Note 3） |  | $\begin{array}{\|c\|} \hline 1,20047,242 \\ 600 \\ 350.622 \\ 35,780 \\ \hline \end{array}$ | $\begin{aligned} & 80031.496 \\ & 4001.748 \\ & 2409.449 \\ & - \end{aligned}$ | $\phi 0.3 \mathrm{~mm}$ $\phi 0.012$ in opaque object |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | FT－WA30 |
|  |  |  |  | $\begin{array}{ccc} 600 & 23.622 \\ 300 \\ 32.1811 \\ 220 & 8.661 \\ & - \end{array}$ | $\begin{aligned} & 30011.811 \\ & 150 \\ & 150 \\ & 110.301 \\ & \hline 40 \end{aligned}$ | $\begin{array}{cc} 220 & 8.661 \\ 110 & .631 \\ 80 & 3.150 \end{array}$ | $\phi 0.25 \mathrm{~mm}$ $\phi 0.010$ in opaque object |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | FT－WA8 |
|  |  | $\begin{array}{ll} \text { Easy mounting }- \text { Top sensing } \\ \text { W3 } X H 8 \times 12 \end{array}$ | $\begin{gathered} \text { 1,200 } 2,50098.425 \\ \hline \hline 41016.142 \\ \hline \end{gathered}$ | $\begin{array}{ll} 400 & 15778 \\ 20 & 7.784 \\ 140 & 5.512 \\ & - \end{array}$ | $\begin{aligned} & 200 \\ & \begin{array}{l} 7.874 \\ 100 \\ 10397 \\ 70 \end{array} 2.756 \\ & \end{aligned}$ | $\begin{array}{rr}180 & 7.077 \\ 90 & .3543 \\ 65 & 2.559 \\ & - \\ & \end{array}$ | $\begin{aligned} & \phi 0.08 \mathrm{~mm} \\ & \phi 0.003 \text { in } \\ & \text { opaque object } \end{aligned}$ | $\begin{gathered} 8< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | FT-WZ8H |
|  |  | Easy mounting • Side sensing W3 XH12XD8 | $\begin{aligned} & 70027.559 \\ & \\ & \\ & 00019.50059 .055 \\ & 0 \\ & 8.268 \\ & \hline \end{aligned}$ | $\begin{array}{c\|c\|c\|} \hline 240 & 9.449 \\ 120 & 4.724 \\ 80 & 3.150 \\ & - \end{array}$ | $\begin{array}{ll} 120 & 4.724 \\ 60 & 2.362 \\ 40 & 1.575 \\ & - \end{array}$ | $\begin{array}{ll} 100 & 3.937 \\ 50 & 1.969 \\ 30 & 1.181 \\ & - \\ \hline \end{array}$ | $\phi 0.05 \mathrm{~mm}$ $\phi 0.0020$ in opaque object |  |  | $\begin{gathered} \stackrel{\text { New }}{ } \text { FT-WZ8E } \end{gathered}$ |
|  |  |  | $\begin{aligned} & 33012.9927 .559 \\ & 409.449 \\ & 4.724 \end{aligned}$ | $\begin{array}{ll} 80 & 3.150 \\ 40 & 1.575 \\ 25 & 0.984 \\ & 1 \end{array}$ | $\begin{array}{ll} 40 & 1.575 \\ 20 & 0.787 \\ 13 & 0.512 \\ & - \end{array}$ | $\begin{array}{ll} 36 & .417 \\ 18 & 0.709 \\ 12 & 0.472 \\ & \end{array}$ | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in opaque object |  |  | FT-WZ8 |
|  |  | Side－view type with small light dispersion | 70027.559 600 30011.811 | $\begin{array}{cc}300 & 11.811 \\ 150 & 5.906 \\ 100 & 3.937 \\ & -\end{array}$ | 160 6.299 <br> 80 3.150 <br> 60 2.362 <br>  - <br>   | 150 5.906 <br> 75 2.953 <br> 45 1.772 <br>  - <br>   | $\phi 0.06 \mathrm{~mm}$ $\phi 0.0024$ in opaque object | $\begin{gathered} g \times \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | $\begin{aligned} & \text { New } \\ & \text { FT-WKV8 } \end{aligned}$ |
|  |  | With lens • Long sensing range | $\begin{aligned} & \quad 60023.622^{1,20047.244} \\ & 42016.535 \\ & 108.268 \\ & \hline \end{aligned}$ | $$ | $\begin{array}{ll} 120 & 4.724 \\ 60 & 2.362 \\ 40 & 1.575 \\ & - \end{array}$ | $\begin{array}{ll} 110 & 4.331 \\ 55 \\ 35 & 2.65 \\ 35 & 1.378 \\ \hline \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | FT－WS8L |
|  |  | $\begin{aligned} & \text { Lens mountable } \\ & \longrightarrow \text { M4 } \end{aligned}$ |  |  |  |  | $\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { opaque object } \end{aligned}$ |  |  | FT－W8 |
|  | $\begin{aligned} & \text { 무 } \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\tilde{W}}{\tilde{\omega}} \end{aligned}$ | $\begin{aligned} & \phi 3 \\ & \hline 0.118 \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & 9511.417 \\ & 90741 \\ & 07.874 \\ & .937 \end{aligned}$ | $\begin{array}{cc} 90 & 3.543 \\ 45 & 1.772 \\ 30 & 1.181 \\ & - \end{array}$ | $\begin{array}{ll} 56 & 2.205 \\ 28 & 1.102 \\ 20 & 0.787 \\ & - \end{array}$ | $\begin{array}{lll} 42 & 1.654 \\ 21 & 0.827 \\ 15 & 0.591 \\ & - \end{array}$ | $\begin{aligned} & \phi 0.05 \mathrm{~mm} \\ & \phi 0.0020 \text { in } \\ & \text { opaque object } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | $\text { FT-WS3 }{ }^{\text {New }}$ |
|  |  | $\begin{gathered} \phi 2.5 \\ \phi 0.098 \\ \rightarrow-5 \end{gathered}$ |  |  |  |  | $\begin{aligned} & \phi 0.03 \mathrm{~mm} \\ & \phi 0.0012 \text { in } \\ & \text { opaque object } \end{aligned}$ |  |  | FT－WS8 |
|  | 产 | 鸟解 |  | 16 <br> 0.630 <br> 8 <br> 8 | $\begin{array}{rrr}10 & 0.394 \\ 5 & 0.197\end{array}$ | $\begin{array}{lll}8 & 0.315 \\ 4 & 0.157\end{array}$ | $\phi 0.02 \mathrm{~mm}$ |  | R1 mm | FT－W4 |
|  | 年 | $\xrightarrow{\phi 1.5} \xrightarrow{\phi 0.059}$ |  | $\stackrel{0.197}{-}$ | 3 0.118 <br>   <br>  - | $\begin{array}{r}2.50 .098 \\ - \\ \hline\end{array}$ | opaque object |  | R0．039 in | FT－WS4 |
|  |  | Sleeve part cannot be bent． | .543 <br> .755 <br> 81 <br> 91 | - - - - - | - <br> - <br> - <br> - | - <br> - <br> - <br> - | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | $\begin{gathered} \text { New } \\ \text { FT-WV42 } \end{gathered}$ |
|  |  |  |  | $\begin{array}{r} 56022.047 \\ 28011.024 \\ 200 \\ 7.874 \\ - \\ \hline \end{array}$ | $\begin{array}{\|rr} \hline 200 & 7.874 \\ 100 & 3.97 \\ 65 & 2.559 \\ \hline \end{array}$ | $\begin{array}{rr}180 & 7.077 \\ 90 & .3543 \\ 65 & 2.559 \\ & - \\ & -\end{array}$ | $\phi 0.03 \mathrm{~mm}$ $\phi 0.0012$ in opaque object |  | $\begin{aligned} & \text { R4 mm } \\ & \text { R0. } 157 \text { in } \end{aligned}$ | FT－Z8H |
|  |  | Easy mounting • Side sensing W3XH12XD8 | 80031.496 $6000^{1,60062.992}$ $23.622^{2}$ | $\begin{array}{rr} 400 & 15.788 \\ 200 & 7.874 \\ 140 & 5.512 \\ & - \\ \hline \end{array}$ | $\begin{array}{\|cc\|} \hline 200 & 7.874 \\ 100 & 3.937 \\ 65 & 2.559 \\ \hline \end{array}$ | 140 5.512 <br> 700  <br> 50 1.569 <br>  - <br>  - |  |  |  | FT－Z8E |
|  |  |  | $\begin{aligned} & 40015.748 \\ & 300 \text { 11.811 } \\ & 5.512 \end{aligned}$ | 120 4.724 <br> 60 2.362 <br> 40 1.575 <br>  - <br>  - | $\begin{array}{ccc} 60 & 2.362 \\ 30 & 1.181 \\ 22 & 0.866 \\ & & - \end{array}$ | $\begin{array}{ll} 46 & 1.811 \\ 23 & 0.006 \\ 16 & 0.630 \\ & - \end{array}$ |  |  |  | FT－Z8 |
|  |  | Lens mountable | $\begin{aligned} & 32012.598 .591 \\ & 309.055 \\ & 4.331 \end{aligned}$ | $\begin{array}{ll} 130 & 5.118 \\ 65 & 2.559 \\ 45 & 1.772 \\ & - \end{array}$ | $\begin{array}{cc}70 & 2.756 \\ 35 & 1.378 \\ 25 & 0.984 \\ & - \\ & -\end{array}$ | $\begin{array}{cc}56 & 2.205 \\ 28 & 1.102 \\ 20 & 0.787 \\ & -\end{array}$ | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in opaque object |  |  | FT－P80 |
|  |  |  | $\begin{aligned} & 40015.748 \\ & 907.480 \\ & 05.512 \\ & .150 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 50 & 1.969 \\ 25 & 0.984 \\ 18 & 0.709 \\ & - \end{array}$ | 26 1.024 <br> 13 0.512 <br> 8 0.315 <br>  - <br>  - | $\begin{array}{cc} 20 & 0.787 \\ 10 & 0.394 \\ 7 & 0.276 \\ & - \end{array}$ |  |  |  | $\text { FT-P60 }{ }^{\text {New }}$ |
|  |  | - |  | 32 1.260  <br> 16.030   <br> 16   <br> 12 0.472  <br>   - <br>    | $\begin{array}{rr}18 & 0.709 \\ 9 & 0.354 \\ 7 & 0.276 \\ & - \\ & -\end{array}$ | $\begin{array}{rr}14 & 0.551 \\ 7 & 0.276 \\ 5 & 0.197 \\ - \\ & -\end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object |  | $\begin{aligned} & \text { R4 mm } \\ & \text { R0. } 157 \text { in } \end{aligned}$ | FT－P40 |
|  |  | $\xrightarrow{\phi 1.5}$ | $\begin{aligned} & 28011.024 \\ & 04.724 \\ & 3.543 \\ & 654 \end{aligned}$ | $\begin{array}{cc} 36 & 1.417 \\ 18 & 0.709 \\ 14 & 0.551 \\ & - \\ \hline \end{array}$ | $\begin{array}{ccc} 20 & 0.787 \\ 10 & 0.394 \\ 8 & 0.315 \\ & - \\ \hline \end{array}$ | $\begin{array}{cc} 18 & 0.709 \\ 9 & 0.354 \\ 7 & 0.276 \\ & - \end{array}$ |  | $\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$ |  | FT－P2 |
|  |  |  | .150 <br> .75 <br> 81 <br> 69 | $\begin{array}{cc} 14 & 0.551 \\ 7 & 0.276 \\ 4 & 0.157 \\ & \end{array}$ | 6 0.236 <br> 3 0.118 <br> 2 0.079 <br>  - <br>  - | $\begin{array}{cc} 14 & 0.551 \\ 7 & 0.276 \\ 4 & 0.157 \\ & - \end{array}$ |  | $\begin{aligned} & 500 \mathrm{~mm} \\ & 19.685 \mathrm{in} \end{aligned}$ |  | $\text { FT-PS1 }{ }^{\text {New }}$ |

Notes：1）Please take care that the sensing range of the free－cut type fiber may be reduced by $20 \%$ max．depending upon how the fiber is cut．In addition，the infrared type is easily affected by humidity，so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate．
2）The minimum sensing object size is the value for red LED type．Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type．The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition．
）The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long．

## LIST OF FIBERS

Special use fibers [Thru-beam type (one pair set)]

| Type |  | Shape of fiber head ( mm in) | Sensing range (mm in) (Note 1) | $\begin{aligned} & \text { ■ :LONG } \square: \text { :FAST } \\ & \square \\ & \square \end{aligned}$ |  |  | Min. sensing object $\binom{$ under the optimum }{ condition (Note 2) } |  | $\begin{aligned} & \text { Allowable } \\ & \text { bending } \\ & \text { radius } \end{aligned}$ | Model No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infrared LED |  |  |  |  |
|  |  |  |  | $3,500137.795$ 3 3,500 137.795 $3,500 ~ 137.795$ $3,500 ~ 137.795$ (Note 3) | $\begin{aligned} & \hline 2,40094.488 \\ & 1,20077.24 \\ & 70027.559 \end{aligned}$ | $\begin{aligned} & 1,20047.244 \\ & 60029.622 \\ & 350 \\ & 33.780 \end{aligned}$ | $\begin{aligned} & 80031.496 \\ & 40015778 \\ & 240 \quad 9.449 \end{aligned}$ | $\begin{aligned} & \phi 0.3 \mathrm{~mm} \\ & \phi 0.012 \text { in } \\ & \text { opaque object } \end{aligned}$ | $\begin{gathered} 8< \\ 2 \mathrm{gm} \\ 6.562 \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \mathrm{R} 0.394 \mathrm{in} \end{aligned}$ | FT-A30 |
|  |  |  | $\longrightarrow$$1,50059.055$ <br> 1,100 <br> 75029.528 <br> 43.307 | $\begin{aligned} & 60023.622 \\ & 30011.811 \\ & 220 \quad 8.661 \\ & \hline \end{aligned}$ | $\begin{aligned} & 30011.811 \\ & 150 \\ & 15090 \\ & 1104.331 \\ & \\ & \hline \end{aligned}$ | 220 8.691 <br> 110  <br> 80 4.31 <br> 8.150  <br>  - <br>  - | $\begin{aligned} & \phi 0.25 \mathrm{~mm} \\ & \phi 0.010 \text { in } \\ & \text { opaque object } \end{aligned}$ | $\begin{array}{\|c\|} \hline 8 \times \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{array}$ | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \mathrm{R} 0.394 \mathrm{in} \end{aligned}$ | FT-A8 |
|  | 入ิ |  | 65025.591 33012.992 2208.661 1154.528 | $\begin{array}{ll}120 & 4.724 \\ 60 & 2.262 \\ 40 & 1.575 \\ & - \\ & \\ & \end{array}$ | 60 2.362 <br> 30 1.181 <br> 20 0.787 <br>  - <br>  - | $\begin{array}{ll}48 & 1.890 \\ 24 & 0.045 \\ 18 & 0.709 \\ & - \\ & -\end{array}$ | Horizontal: $\phi 0.025 \mathrm{~mm}$ $\phi 0.0010$ in opaque object Vertical: $\phi 0.45 \mathrm{~mm}$ $\phi 0.018$ in opaque object |  | R25 mmR0.984 in | FT-AFM2 |
|  | 交 | Side sensing W5 XH15 X D 15 W0. $197 \times$ H0.591 X 0.591 | 29011.417 2007.228 1003.937 | $\begin{array}{ll}120 & 4.724 \\ 60 \\ 60323 \\ 40 & 1.575 \\ & -\end{array}$ | 60 2.362 <br> 30 1.181 <br> 20 0.787 <br>   | $\begin{array}{ll}48 & 1.890 \\ 24 & 0.045 \\ 18 & 0.709 \\ & - \\ & -\end{array}$ |  |  |  | FT-AFM2E |
|  |  |  | $\begin{aligned} & 2,00078.740 \\ & 1,000 \\ & 39.370 \end{aligned}$ |  | $\begin{array}{rl} 200 & 7.874 \\ 100 \\ 65937 \\ 65 & 2.559 \end{array}$ | $\begin{array}{lll} 150 & 5.006 \\ 75 & 2.53 \\ 40 & 1.575 \\ & - \end{array}$ | $\phi 0.06 \mathrm{~mm}$ <br> $\phi 0.0024$ in <br> opaque object | $\begin{gathered} 8< \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ | R25 mm R0.984 in | FT-K8 |
|  |  |  | $\square 35013.78080031 .496$ |  |  |  |  |  |  | FT-KV8 |
|  |  | Side-view W2 X H1.5 X D 20 | 25090019.683 1807.087 1003.937 | $\begin{array}{rrr}80 & 3.50 \\ 35 & 1.378 \\ 10 & 0.394 \\ & - \\ & & \end{array}$ | - - - - | - - - - | $\phi 0.02 \mathrm{~mm}$ <br> $\phi 0.0008$ in <br> opaque object | $\begin{array}{\|c\|} \hline \stackrel{8}{8} \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \mathrm{R} 0.394 \mathrm{in} \end{aligned}$ | FT-KV1 |
|  |  |  | $\begin{aligned} & 0.709 \\ & 0.394 \\ & .315 \\ & .118 \\ & \hline \end{aligned}$ | $\begin{array}{rrr}3 & 0.1118 \\ 2 & 0.079 \\ 1 & 0.039 \\ & & - \\ & \end{array}$ | $\begin{array}{rr}10.039 \\ & - \\ & \\ & - \\ & -\end{array}$ |  | $\phi 0.02 \mathrm{~mm}$ | $\begin{aligned} & 500 \mathrm{~mm} \\ & 19.685 \mathrm{in} \end{aligned}$ | R5 mm | FT-E12 |
|  |  |  |  | $\begin{array}{rr}14 & 0.551 \\ 7 & 0.276 \\ 4 & 0.157 \\ & - \\ & \end{array}$ | $\begin{array}{rr} 6 & 0.236 \\ 3 & 0.118 \\ 2 & 0.079 \\ & - \\ \hline \end{array}$ | $\begin{array}{ccc} 10 & 0.394 \\ 5 & 0.197 \\ 3 & 0.118 \\ & & \end{array}$ | opaque object | $\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$ | $\text { Ro. } 197 \text { in }$ | FT-E22 |
|  | (e) |  | 32012.598 2309.591 1104.055 4.331 | $\begin{array}{ll} 130 & 5.118 \\ 64 & 2.520 \\ 45 & 1.772 \\ & - \end{array}$ | $\begin{array}{cc} 64 & 2.520 \\ 32 & 1.260 \\ 22 & 0.866 \\ & \end{array}$ | $\begin{array}{ll} 130 & 5.118 \\ 64 & .2520 \\ 45 & 1.772 \\ & - \end{array}$ | $\begin{aligned} & \phi 0.05 \mathrm{~mm} \\ & \phi 0.0020 \text { in } \\ & \text { opaque object } \end{aligned}$ | $\left.\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered} \right\rvert\,$ | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \text { R0.394 in } \end{aligned}$ | FT-P81X |

Notes: 1) Please take care that the sensing range of the free-cut type fiber may be reduced by $20 \%$ max. depending upon how the fiber is cut. In addition, the infrared type is easily affected by humidity, so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate.
2) The minimum sensing object size is the value for red LED type. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition.
3) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long.

FX－301

## LIST OF FIBERS

Environment resistant fibers［Thru－beam type（one pair set）］

| Type |  | Shape of fiber head （ mm in） | Sensing range（mm in）（Note 1） |  | ：LONG $\square$ ：FAST |  | Min．sensing object $\binom{$ under the optimum）}{ condition（Note 2）} | Fiber cable length <br> FFeeat | Allowable bending radius | Model No． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infrared LED |  |  |  |  |
|  |  |  |  | 28055021.654 2007.874 903.543 | $\begin{array}{ll} 100 & 3.937 \\ 50.1 .969 \\ 35 & 1.378 \\ & \end{array}$ | $\begin{array}{ll}50 & 1.969 \\ 25 & 0.084 \\ 18 & 0.709 \\ & -\end{array}$ | $\begin{aligned} & 42016.535 \\ & 210 \\ & 160 \quad .268 \\ & 1609 \\ & \hline \end{aligned}$ | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in opaque object | $\begin{gathered} 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ |  | FT－H35－M2 FT－H35－M2S6 |
|  |  | Allows flexible wiring $200^{\circ} \mathrm{C} 392^{\circ} \mathrm{F}$ Lens mountable | $\begin{aligned} & =31012.205 \\ & =1405.512 \\ & 1.969 \end{aligned}$ | $\begin{array}{ll} 42 & 1.732 \\ 22 & 0.860 \\ 14 & 0.551 \\ & - \end{array}$ | $\begin{array}{ccc} 22 & 0.866 \\ 11 & 0.433 \\ 7 & 0.276 \\ & 0 \end{array}$ | $\begin{array}{cc} 220 & 8.661 \\ 110 & .631 \\ 70 & .2756 \\ & \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in opaque object | 1 m <br> 3.281 ft <br> 2 m <br> 6.562 ft | $\begin{aligned} & \text { R10 mm } \\ & \text { R0.394 in } \end{aligned}$ | FT－H20W－M1 FT－H20W－M2 |
|  |  | $200^{\circ} \mathrm{C} 392^{\circ} \mathrm{F}$ Lens mountable <br>  |  | $\begin{array}{ccc} 100 & 3.937 \\ 50 & 1.969 \\ 35 & 1.378 \\ & & - \\ \hline \end{array}$ | $\begin{array}{ll} 50 & 1.969 \\ 25 & 0.984 \\ 18 & 0.709 \\ & \\ \hline \end{array}$ |  | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in opaque object | $\left.\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered} \right\rvert\,$ | R25 mm | FT－H20－M1 |
|  |  |  | 44017.38034 .646 <br> $\square 150011.811$ <br> 1.102 | $\begin{array}{cc}72 & 2.835 \\ 36 & 1.417 \\ 26 & 1.024 \\ & - \\ & \\ & \end{array}$ | $\begin{array}{cc}32 & 1.260 \\ 16 & 0.630 \\ 10 & 0.394 \\ & -\end{array}$ | $\begin{array}{cc}70 & 2.756 \\ 35 & .378 \\ 25 & 0.984 \\ & \\ & -\end{array}$ | $\phi 0.06 \mathrm{~mm}$ $\phi 0.0024$ in opaque object |  | R0．984 in | FT－H13－FM2 |
|  |  |  |  | $\begin{aligned} & 320 \\ & 120.598 \\ & 160 \\ & 120 \\ & \hline .7 .724 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1606.299 \\ 80 \\ 80.150 \\ 60 \quad .362 \end{array}$ | $\begin{aligned} & 320 \\ & 125.598 \\ & 160 \\ & 120 \quad 4.924 \\ & \hline 60 \end{aligned}$ | $\phi 4 \mathrm{~mm}$ $\phi 0.157$ in opaque object | $\left.\begin{array}{\|c} g \times 8 \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{array} \right\rvert\,$ | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FT－Z802Y |
|  |  |  |  | $\begin{array}{rr}160 & 6.299 \\ 80 & 1.150 \\ 50 & 1.969 \\ & - \\ & -\end{array}$ | $\begin{array}{cc} 160 & 6.299 \\ 80 & .290 \\ 50 & 1.969 \\ & - \\ \hline \end{array}$ | $\begin{aligned} & 400157.78 \\ & 200 \\ & 20784 \\ & 150 \quad 5.906 \\ & \hline \end{aligned}$ | $\phi 0.08 \mathrm{~mm}$ |  | R30 mm | FT－L8Y |
|  |  |  | 40015.748 <br> 28011.496 <br> $\square 1405.512$ <br> $\square$ | 120 4.724 <br> 60 2.262 <br> 35 1.378 <br>  - <br>   | $\begin{array}{lr} 80 & 3.150 \\ 40 & 1.575 \\ 25 & 0.984 \\ & \\ \hline \end{array}$ | $\begin{array}{cc}75 & 2.953 \\ 38 & .1 .96 \\ 24 & 0.945 \\ & - \\ & -\end{array}$ | opaque object | 6.562 ft （Note 3） | R1． 181 in | FT－V8Y |
|  | E | Lens mountable <br> M4 | 2309.055 80.504 803.150 |  | $\begin{array}{cc} 46 & 1.811 \\ 23 & 0.906 \\ 16 & 0.630 \\ & - \\ \hline \end{array}$ |  | $\phi 0.02 \mathrm{~mm}$ <br> $\phi 0.0008$ in | 1 m | R200 mm <br> R7． 874 in | FT－6V |
|  |  |  | $\begin{aligned} & 12208.661 \\ & \hline 752.953 \\ & \hline .978 \\ & \hline \end{aligned}$ | 36 1.417 <br> 18 0.709 <br> 12 0.472 <br>  - | $\begin{array}{cc} 18 & 0.709 \\ 9 & 0.354 \\ 6 & 0.236 \\ & - \end{array}$ | $\begin{array}{cc}28 & 1.102 \\ 14 & 0.551 \\ 10 & 0.394 \\ & -\end{array}$ |  | 3.281 ft | R30 mm | FT－60V |

Notes：1）Please take care that the sensing range of the free－cut type fiber may be reduced by $20 \%$ max．depending upon how the fiber is cut．In addition，the infrared type is easily affected by humidity，so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate．
2）The minimum sensing object size is the value for red LED type．Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type．The optimum condition is the condition when the sensitivity is set so that the sensing output just changes to light incident operation in the object absent condition．
3）The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted．
The vacuum type fiber must be used with the following products as a set．
FT－J6：Fiber at atmospheric side（one pair set）FV－BR1：Photo－terminal（one pair set）

## Semi－standard fibers（Custom made per order）

The fiber cable length or sleeve length of the standard fibers can be modified at your request．Select the fiber cable length（symbol 图）or the sleeve length （symbol $\triangle$ ）from the table below．

| Type | Basic model No． | Fiber cable length （Unit：m ft） | $\triangle$ Sleeve length （Unit：cm in） |
| :---: | :---: | :---: | :---: |
| Standard threaded head（free－cut） | FT－FM 园 | $\begin{aligned} & \hline 39.843,413.123,5 \text { 16.404, } 1032.808 \text {, } \\ & 1549.213,2065.617,2582.021,3098.425 \\ & \hline \end{aligned}$ | － |
| With sleeve | FT－FM 匈－S $\triangle$ | $\begin{aligned} & 2 \text { 6.562 (Note), } 3 \text { 9.843, } 4 \text { 13.123, } 5 \text { 16.404, } \\ & 1032.808,1549.213,2065.617,2582.021,3098.425 \end{aligned}$ | $\begin{array}{\|l} \hline 10.394,20.787,3 \text { 1.181, } 4 \text { 1.575, } 51.969,62.362, \\ 72.756,83.150,93.543,103.937,114.331,124.724 \\ \hline \end{array}$ |
| With large diameter lens | FT－FM 园 L | 20 65．617， 3098.425 | － |
| Small diameter threaded head with sleeve（rree－cut） | FT－NFM2－S $\triangle$ | － | $\begin{array}{\|l} \hline 10.394,20.787,3 \text { 1.181, } 4 \text { 1.575, } 51.969,62.362, \\ 72.756,83.150,93.543,103.937,114.331,124.724 \\ \hline \end{array}$ |
| Wide beam | FT－WA30－ $\square$ <br> FT－WA8－ $\square$ <br> FT－A30－ $\qquad$ <br> FT－A8－ | 516.404 | － |
| $200^{\circ} \mathrm{C} 392 \mathrm{~F}$ heat－resistant | FT－H20－M 匀 | 26．562， 39.843 | － |
| $350^{\circ} \mathrm{C6} 62^{\circ} \mathrm{h}$ haat－resistant | FT－H35－M 呁 | 39.843 | $\square$ |
| Chemical－resistant | FT－Z80 漹 Y | 5 16．404， 722.966 | － |

Correlation between sensing range attenuation coefficient and fiber cable length
The longer the fiber cable，the shorter the sensing range．


## LIST OF FIBERS

Standard fibers (Reflective type)


Notes: 1) The sensing range is specified for white non-glossy paper (FD-B8, FD-5, FD-FM2, FD-FM2S, FD-FM2S4, FD-N8, FD-T80, FD-S80 and FD-R80: $400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$, FD-T40, FD-N4, FD-NFM2, FD-NFM2S, FD-NFM2S4, FD-SNFM2, FD-SFM2SV2 and FD-V41: $200 \times 200 \mathrm{~mm}$ $7.874 \times 7.874 \mathrm{in}$ ) as the object.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by $20 \%$ max. depending upon how the fiber is cut. In addition, the infrared type is easily affected by humidity, so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate.
3) The minimum sensing object size is the value for red LED type at maximum sensitivity. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
Also, note that the corresponding setting distance is different from the rated sensing distance.
4) The fiber cutter is not supplied as an accessory with FD-N8 and FD-N4. Please order it separately.

FX-301

LIST OF FIBERS
Sharp bending fibers / Flexible fibers (Reflective type)

| Type |  | Shape of fiber head ( mm in ) | Sensing range (mm in) (Note 1, 2) |  | $\text { - :LONG } \square: \text { :FAST }$ |  | Min. sensing object (at the maximum) sensitivity (Note 3) | Fiber cable length $8 \times$ Freat | Allowable bending radius | Model No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infared LED |  |  |  |  |
|  |  |  | Long sensing range $\cdot$ Rectangular head | 20 to 4800.787 to 18.898 <br> 20 to 230 <br> 20 to 1787 to 9.055 <br> $\square 25$ to 1000.984 to 6.693 <br> $\square$ | - <br> - <br> - <br> - | - - - - | - - - | $\phi 0.3 \mathrm{~mm}$ $\phi 0.012$ in copper wire |  | $\begin{aligned} & \mathrm{R} 1 \mathrm{~mm} \\ & \mathrm{R} 0.039 \mathrm{in} \end{aligned}$ | FD-WKZ1 |
|  |  |  |  | $\begin{array}{cc}23 & 0.906 \\ 11 & 0.433 \\ 8 & 0.315 \\ & - \\ & \end{array}$ | $\begin{array}{rl} 14 & 0.551 \\ 7 & 0.276 \\ 4 & 0.157 \\ & - \end{array}$ | $\begin{array}{rrrr} 11 & 0.433 \\ 5.5 & 0.217 \\ 3 & 0.118 \\ & & \end{array}$ | $\phi 0.02 \mathrm{~mm}$ <br> $\phi 0.0008$ in <br> gold wire |  | $\begin{aligned} & R 1 \mathrm{~mm} \\ & \text { R0.039 in } \end{aligned}$ | FD-W8 |
|  |  | Sleeve 40 mm 1.575 in |  | $\begin{array}{rr} 5 & 0.197 \\ 2.5 & 0.098 \\ 1.5 & 0.059 \\ \hline \end{array}$ | $\begin{array}{rr} 3 & 0.118 \\ 1.5 & 0.059 \\ 1 & 0.039 \\ & \\ \hline \end{array}$ | $\begin{array}{rl} 2 & 0.079 \\ 1 & 0.039 \\ & - \\ & - \\ \hline \end{array}$ |  |  | Fiber <br> R1 mm <br> R0.039 in <br> Sleeve <br> R10 mm <br> R0.394 in | FD-W44 |
|  |  |  | $\longrightarrow 9031907.480$ | $\begin{array}{ccc} 23 & 0.906 \\ 11 & 0.333 \\ 8 & 0.315 \\ & 0 \end{array}$ | $\begin{array}{cc} 14 & 0.551 \\ 7 & 0.276 \\ 4 & 0.157 \\ & - \end{array}$ | $\begin{array}{rrr} 11 & 0.433 \\ 5.5 & 0.217 \\ 3 & 0.118 \\ & . \end{array}$ |  |  | $\begin{aligned} & \text { R1 mm } \\ & \text { R0.039 in } \end{aligned}$ | FD-WT8 |
|  |  | $\begin{array}{r} \phi 3 \\ \phi 0.118 \\ \hline \end{array}$ | $\longrightarrow 321.2602 .362$ |  |  |  |  |  |  | FD-WS8 |
|  |  | M3 |  | $\begin{array}{rr} 5 & 0.197 \\ 2.5 & 0.098 \\ 1.5 & 0.059 \\ \hline \end{array}$ | $\begin{array}{rrr}3 & 0.118 \\ 1.5 & 0.059 \\ 1 & 0.039 \\ & - \\ & \\ & & \end{array}$ | $\begin{array}{rrr}2 & 0.079 \\ 1 & 0.039 \\ & - \\ & - \\ & \end{array}$ |  |  |  | FD-WT4 |
|  |  | Small spot for sensing minute objects Coaxial • Lens mountable <br> For sensing minute objects • Coaxial $\phi 3$ |  | $\begin{array}{cc} 11 & 0.433 \\ 5 & 0.197 \\ 3 & 0.118 \\ & \\ \hline \end{array}$ | $\begin{array}{ll} 6 & 0.236 \\ 3 & 0.168 \\ 2 & 0.079 \\ & - \end{array}$ |  | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire |  | $\begin{aligned} & \text { R2 } \mathrm{mm} \\ & \text { R0.079 in } \end{aligned}$ | FD-WG4 FD-WSG4 |
|  |  | Glass substrate detection | 6.5 to 140.256 to 0.551 (Convergent point 8 8.315 ) 7.0 to 120.276 to 0.472 (Convergent point 8 0.315) 7.5 to 120.295 to 0.472 (Convergent point 8 8.315) Cannot use | - <br> - <br> - <br> - | - - - - | - - - | $\begin{aligned} & \phi 1.9 \mathrm{~mm} \\ & \phi 0.075 \mathrm{in} \\ & \text { metal pipe (gray) } \end{aligned}$ | 9 | R1 mm | FD-WL41 |
|  |  | Specular object detection | 0.6 to 3.50 .024 to 0.138 (Convergent point 20.079 ) 0.9 to 2.70 .035 to 0.106 (Convergent point 20.079 ) 1 to 2.50 .039 to 0.098 (Convergent point 20.079 ) Cannot use | - <br> - <br> - <br> - | - - - - | - <br> - <br> - | $\phi 0.08 \mathrm{~mm}$ $\phi 0.003$ in gold wire |  | R0.039 in | FD-WL42 |
|  |  | $\phi 3$ <br> Sleeve part cannot be bent. | V 150.576 <br> $\square 50.197$ <br> Cannot use | - <br> - <br> - <br> - | - - - - | - - - - | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire |  | $\begin{aligned} & \text { R1 } \mathrm{mm} \\ & \text { R0.039 in } \end{aligned}$ | FD-WV42 |
|  |  |  |  | $\begin{array}{ccc}40 & 1.575 \\ 20 & 0.787 \\ 13 & 0.512 \\ & - \\ & & \end{array}$ | $\begin{array}{cc}20 & 0.787 \\ 10 & 0.394 \\ 7 & 0.276 \\ & - \\ & \end{array}$ | $\begin{array}{cc}18 & 0.709 \\ 9 & 0.354 \\ 6 & 0.336 \\ & - \\ & \\ & \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire | $\begin{gathered} g \times \\ 2 \mathrm{~m} \\ 6.562 \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \text { R4 } \mathrm{mm} \\ & \text { R0. } 157 \mathrm{in} \end{aligned}$ | FD-P80 |
|  |  |  | $\square 451.772^{9.543}$ | $\begin{array}{ll} 20 & 0.787 \\ 10 & 0.394 \end{array}$ | $\begin{array}{rrr}10 & 0.394 \\ 5 & 0.197\end{array}$ | $\begin{array}{ll} 8 & 0.315 \\ 4 & 0.157 \end{array}$ |  |  |  | FD-P60 |
|  |  | $\begin{array}{r} \phi 3 \\ \phi 0.118 \\ \hline \end{array}$ |  |  |  |  |  |  |  | FD-P50 |
|  |  |  |  | $\begin{array}{rr} 5 & 0.197 \\ 2.5 & 0.98 \\ 1.5 & 0.059 \end{array}$ |  | 2 0.079 <br> 1 0.039 <br>  - <br>  - <br>   |  |  |  | FD-P40 |
|  |  | $\begin{aligned} & \phi 1.5 \\ & \phi 0.059 \\ & \hline \end{aligned}$ |  | $\begin{array}{rrrr} 8 & 0.315 \\ 4 & 0.157 \\ 2.5 & 0.098 \\ \hline \end{array}$ | $\begin{array}{rrrr} 4 & 0.157 \\ 2 & 0.079 \\ 1.5 & 0.059 \\ & - \\ \hline \end{array}$ | $\begin{array}{rrrr} 7 & 0.276 \\ 3.5 & 0.138 \\ 2 & 0.079 \\ & & - \end{array}$ |  | $\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$ |  | FD-P2 |

Notes: 1) The sensing range is specified for white non-glossy paper [ $100 \times 100 \mathrm{~mm} 3.937 \times 3.937$ in (FD-WKZ1, FD-W8, FD-WT8, FD-WS8 and FD-P80: $400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$, FD-WG4, FD-WSG4, FD-P60 and FD-P50: $200 \times 200 \mathrm{~mm} 7.874 \times 7.874 \mathrm{in}$, FD-WL41: glass substrate $100 \times 100 \times \mathrm{t} 2 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.472 \mathrm{in})$ ] as the object.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by $20 \%$ max. depending upon how the fiber is cut. In addition, the infrared type is easily affected by humidity, so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate.
3) The minimum sensing object size is the value for red LED type at maximum sensitivity. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
Also, note that the corresponding setting distance is different from the rated sensing distance. However, with the fixed-focus reflective type, when the sensitivity is at MAX., it is only possible to detect the minimum size of the sensing object at a distance corresponding to the convergent point.

## LIST OF FIBERS

Special use fibers (Reflective type)

| Type |  | Shape of fiber head ( mm in ) | Sensing range (mm in) (Note 1, 2) |  |  |  | Min. sensing object (at the maximum) sensitivity (Note 3) | Fiber cable lengh 8:Freeow | Allowable bending radius | Model No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infrared LED |  |  |  |  |
|  |  |  | W7 XH15 X D30 W0.276 X H0.591 X 0.1. 181 | $\longrightarrow 501.969 \quad 100$150 <br> 3.937 | 25 150.984 0.59 - - | - | - - - | $\begin{aligned} & \phi 0.02 \mathrm{~mm} \\ & \phi 0.008 \text { in } \\ & \text { gold wire } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} 25 \mathrm{~mm} \\ & \mathrm{R} 0.984 \mathrm{in} \end{aligned}$ | FD-A15 |
|  |  |  |  | $\begin{aligned} & 401.575 \\ & 20.787 \\ & 13 \\ & 13.512 \end{aligned}$ | $\begin{gathered} 180.709 \\ 90.354 \\ 50.197 \end{gathered}$ | $\begin{gathered} 120.472 \\ 60.236 \\ 40.157 \end{gathered}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire |  | R25 mm <br> R0.984 in | FD-AFM2 |
| $\stackrel{0}{0}$ <br> $\stackrel{0}{0}$ <br> $\stackrel{0}{0}$ <br> $\stackrel{0}{0}$ <br> 0 |  | Coaxial. Lens mountable M4 Ciff\|fimm | $552.1651104 .331$ | 220.866110.43380.315- | $\begin{aligned} & 120.472 \\ & 60.236 \\ & 40.157 \end{aligned}$ | $\begin{array}{r} 70.276 \\ 3.50 .138 \\ 20.079 \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire |  | $\begin{aligned} & \text { R25 mm } \\ & \text { R0. } 984 \mathrm{in} \end{aligned}$ | FD-G4 |
|  |  | Coaxial • Lens mountable M3 | $0.42$ |  |  |  |  |  |  | FD-G6 New |
|  |  |  |  | $\begin{array}{r}60.236 \\ 30.18 \\ 20.079 \\ - \\ \hline\end{array}$ | $\begin{array}{r} 30.118 \\ 1.50 .059 \\ 10.039 \\ \hline \end{array}$ | $\begin{array}{rl} 10 & 0.394 \\ 5 & 0.197 \\ 3 & 0.178 \end{array}$ |  | $500 \mathrm{~mm}$ |  | FD-EG1 |
|  |  | Coaxial • Lens mountable <br> $M 3$ |  | $\begin{array}{r}50.197 \\ 20.079 \\ 10.039 \\ \hline\end{array}$ | $\begin{array}{r} 20.079 \\ 10.039 \\ - \\ - \end{array}$ | $\begin{array}{r} 60.236 \\ 3 \\ 30.118 \\ 20.079 \\ \hline \end{array}$ | $\phi 0.04 \mathrm{~mm}$ $\phi 0.0016$ in gold wire |  | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \mathrm{R} 0.394 \mathrm{in} \end{aligned}$ | $\text { FD-EG2 }{ }^{\text {New }}$ |
|  |  |  |  | 20.079 10.039 - - | 10.039 $=$ - | $\begin{array}{r} 30.118 \\ \begin{array}{r} 3 \\ 1.5059 \\ 10.039 \\ 10.039 \end{array} \end{array}$ |  |  |  | $\text { FD-EG3 }{ }^{\text {New }}$ |
|  |  | $\underbrace{\substack{\phi 1.5 \\ \phi 0.05 \\ \phi 0.020 \\ \phi 0.5 \\=}}_{\text {Sleeve part cannot be bent. }}$ |  | 20.079 10.039 - - | 10.039 - - - | $\begin{array}{r} 10.039 \\ - \\ - \\ - \end{array}$ | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire | $\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{R} 10 \mathrm{~mm} \\ & \text { R0.394 in } \end{aligned}$ | FD-E12 |
|  |  |  |  | 60.236 3 30.108 20.79 - | $\begin{array}{r} 30.118 \\ 1.50 .059 \\ 10.039 \\ \hline \end{array}$ | $\begin{aligned} & 60.236 \\ & 30.18 \\ & 20.079 \\ & - \end{aligned}$ |  |  | R25 mm <br> R0.984 in | FD-E22 |
|  |  |  | $\begin{aligned} & { }^{2} 50.197 \\ & { }^{2} 0.118 \\ & \hline \text { Cannot use } \end{aligned}$ | - <br> - <br> - | - - - | - <br> - <br> - <br> - |  | $\begin{aligned} & 500 \mathrm{~mm} \\ & 19.685 \mathrm{in} \end{aligned}$ |  | FD-EN500S1 |
|  |  |  |  | 60.236 <br> 3 <br> 3018 <br> 20.079 | $\begin{array}{r}30.118 \\ 1.50 .059 \\ 10.039 \\ \hline\end{array}$ | $\begin{array}{r}4 \\ \hline\end{array}$ |  | $\left\|\begin{array}{c} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{array}\right\|$ |  | FD-ENM1S1 |
|  |  |  | - 0 to 200 to 0.787 | - | - | - | (LCD glass) |  | $\begin{array}{\|l\|} \hline \text { R4 } \\ \text { R0.157 } \end{array}$ | FD-L43 |
|  |  |  |  | - - - | - - | - - - | $\phi 0.06 \mathrm{~mm}$ $\phi 0.0024$ in gold wire |  | $\begin{aligned} & \text { R10 mm } \\ & \text { R0.394 in } \\ & \hline \end{aligned}$ | FD-L41 |
|  | $\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{\partial} \\ & \text { to } \\ & \text { id } \end{aligned}$ |  |  | - <br> - <br> - | - $=$ $=$ | - <br> - <br> - | $\phi 0.03 \mathrm{~mm}$ $\phi 0.0012$ in gold wire |  |  | FD-L42 |
|  | 는 | $S^{\circ} \begin{aligned} & \mathrm{W} 6 \times \mathrm{H} 18 \times \mathrm{D} 14 \\ & \mathrm{~W} 0.236 \mathrm{HH0.799} 00.551 \end{aligned}$ |  |  |  |  | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire |  |  | FD-L4 |
|  | - 읃 |  |  |  |  |  | (Liquid) |  | Protective tube R40 mm R1. 575 Fiber <br> R15 mm R0.59 | FD-F8Y |
|  | $\stackrel{\text { ¢ }}{\stackrel{\circ}{0}}$ | To ${ }^{\text {a }}$ Mountable on pipe Standard | Applicable pipe diameter: <br> Outer dia. $\phi 6$ to $\phi 26 \mathrm{~mm} \phi 0.236$ to $\phi 1.024$ in transparent pipe <br> [PVC, fluorine resin, polycarbonate, acrylic, glass, wall thickness 1 to 3 mm 0.039 to 0.118 in ] |  |  |  | (Liquid) | $¢_{6}^{2 \mathrm{~m}} \mathrm{c}^{2}$ |  | FD-F41 |
|  | 亦 | - W $25 \times \mathrm{H} 13 \times$ D20 |  |  |  |  | $\mathscr{4} 516 \mathrm{~m}$ | R10 mm | FD-F91 |  |
|  | $\begin{aligned} & \text { 을 } \\ & \hline 1 \end{aligned}$ |  | Applicable pipe diameter: Outer dia. $\phi 6$ to $\phi 26 \mathrm{~mm} \phi 0.236$ to $\phi 1.024$ in transparent pipe [PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in ] |  |  |  |  |  | R0.39 | FD-F4 |
|  |  |  |  |  |  | (30 1.189 <br> 15 0.59 <br> 10 0.394 <br>  - |  | $\phi 0.02 \mathrm{~mm}$ $\phi 0.0008$ in gold wire | $\left.\begin{gathered} 1 \mathrm{~m} \\ 3.281 \mathrm{ft} \end{gathered} \right\rvert\,$ | $\begin{aligned} & \text { R10 mm } \\ & \text { R0.394 in } \end{aligned}$ | FD-P81X |
|  |  |  |  |  |  | $\begin{array}{cc}18 & 0.709 \\ 9 & 0.354 \\ 5 & 0.197 \\ -\end{array}$ | $\begin{array}{\|c} \hline \mathcal{E x} \\ 1 \mathrm{~m} 3.281 \mathrm{tt} \\ \text { (Note 4) } \end{array}$ |  | FD-G6X |  |

Notes: 1) The sensing range is specified for white non-glossy paper [ $100 \times 100 \mathrm{~mm} 3.937 \times 3.937$ in (FD-A15, FD-G4, FD-G6X: $200 \times 200 \mathrm{~mm} 7.874 \times 7.874 \mathrm{in}$, FD-AFM2, FD-AFM2E, FD-P81X: $400 \times 400 \mathrm{~mm} 15.748 \times 15.748 \mathrm{in}$, FD-L43: glass substrate $76 \times 52 \times \mathrm{t} 1.1 \mathrm{~mm} 2.992 \times 2.047 \times \mathrm{t} 0.043 \mathrm{in}$, FD-L41: glass substrate $100 \times 100 \times \mathrm{t} 2 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.079 \mathrm{in})$ ] as the object.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by $20 \%$ max. depending upon how the fiber is cut. In addition, the infrared type is easily affected by humidity, so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate.
3) The minimum sensing object size is the value for red LED type at maximum sensitivity. Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type.
Also, note that the corresponding setting distance is different from the rated sensing distance. However, with the fixed-focus reflective type, when the sensitivity is at MAX., it is only possible to detect the minimum size of the sensing object at a distance corresponding to the convergent point.
4) Following is the allowable cutting range from the end that the amplifier is inserted FD-F8Y: $1,000 \mathrm{~mm} 39.370 \mathrm{in}$, FD-G6X: 700 mm 27.559 in .

FX－301

LIST OF FIBERS


Notes：1）The sensing range is specified for white non－glossy paper［ $400 \times 400 \mathrm{~mm} 15.748 \times 15.748$ in（FD－H30－L32，FD－H18－L31：glass substrate $50 \times 50 \mathrm{~mm} 1.969 \times 1.969 \mathrm{in}$ ）］as the object．
2）Please take care that the sensing range of the free－cut type fiber may be reduced by $20 \%$ max．depending upon how the fiber is cut．In addition，the infrared type is easily affected by humidity，so contact our office if using these sensors in environments with high humidity or where humidity levels can fluctuate．
3）The minimum sensing object size is the value for red LED type at maximum sensitivity．Please contact our office for information on the minimum sensing object size if using amplifiers other than red LED type．Also，note that the corresponding setting distance is different from the rated sensing distance．

The vacuum type fiber must be used with the following products as a set．
FT－J6：Fiber at atmospheric side（one pair set）
FV－BR1：Photo－terminal（one pair set）
Semi－standard fibers（Custom made per order）
The fiber cable length or sleeve length of the standard fibers can be modified at your request．Select the fiber cable length（symbol 㢴）or the sleeve length （symbol $\triangle$ ）from the table below．

| Type | Basic model No． | Fiber cable length （Unit：m ft） | Sleeve length （Unit：cm in） |
| :---: | :---: | :---: | :---: |
| Standard threaded head（free－cut） | FD－FM 匀 | $\begin{aligned} & 3 \text { 9.843, } 4 \text { 13.123, } 5 \text { 16.404, } \\ & 1032.808 .1549 .113 .2065 .617 \end{aligned}$ |  |
| With sleeve | FD－FM 图－S $\triangle$ | $\begin{aligned} & 26.562 \text { (Note), } 3 \text { 9.843, } 4 \text { 13.123, } \\ & 516.404,1032.808,1549.213 \text {, } \\ & 2065.617 \end{aligned}$ |  |
| Small diameter threaded head with sleeve（free－cut） | FD－NFM2－S $\triangle$ | － |  |
| $200^{\circ} \mathrm{C} 392$ F heatresistant | FD－H20－M 騡 | 26．562， 39.843 | － |
| $350^{\circ} \mathrm{C} 662 \%$ heat－resistant | FD－H35－M 匀 | 39.843 | － |

Note：The standard fiber has a 2 m 6.562 ft fiber cable length and a 4 cm 1.575 in or 9 cm 3.543 in sleeve length．
Correlation between sensing range attenuation coefficient and fiber cable length
The longer the fiber cable，the shorter the sensing range．


Accessories（attached with fibers）

Fiber cutter
－FX－CT2


## Fiber attachment


－FX－AT3 －FX－AT3
（for $\phi 2.2 \mathrm{~mm}$
$\phi 0.087$ in fib
－FX－AT4
（for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber） －FX－AT5 （for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber）
－FX－AT6
（for $\phi 1 \mathrm{~mm} \phi 0.039$ in and $\phi 1.3 \mathrm{~mm}$ ） \＄0．051 in mixed fiber

## FIBER OPTIONS

Lens (For thru-beam type fiber)


Notes: 1) Be careful when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult.
Especially when installing a fiber with many cores (sharp bending fibers and heat-resistant glass fiber) please be sure to use it only after you have adjusted it sufficiently. 2) The sensing ranges are the values for red LED type amplifier. Please contact our office for details on sensing ranges for other types of amplifiers. 3) The fiber cable length practically limits the sensing range to 3.500 mm 137.795 in long (FT-H20W-M1 and FT-H20-M1: 1,600 mm 62.992 in ).

## Lens (For reflective type fiber)

| Designation |  | Model No. |  | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pinpoint spot lens | FX-MR1 |  | Pinpoint spot of $\phi 0.5 \mathrm{~mm} \phi 0.020 \mathrm{in}$. Enables detect <br> - Applicable fibers: FD-WG4, FD-G4 • Dist <br> - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to | tection of minu tance to focal $+158^{\circ} \mathrm{F}$ | te objects or small point: $6 \pm 1 \mathrm{~mm} 0.23$ | arks. $\pm 0.039 \mathrm{in}$ |
|  | Zoom lens | FX-MR2 |  | The spot diameter is adjustable from $\phi 0.7 \mathrm{~mm}$ $\phi 0.028$ in to $\phi 2 \mathrm{~mm} \phi 0.079$ in according to how much the fiber is screwed in. <br> - Applicable fibers: FD-WG4, FD-G4 <br> - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ <br> - Accessory: MS-EX-3 (mounting bracket) | Sensing rang <br> $\frac{\text { Screw-in depth }}{}$ <br> 7 mm <br> 12 mm <br> 14 mm | nge (Note 1) <br> Distance to focal point $\phi 18.5 \mathrm{~mm}$ approx. $\phi 27 \mathrm{~mm}$ approx. $\phi 43 \mathrm{~mm}$ approx. | Spot diameter <br> $\phi 0.7 \mathrm{~mm}$ <br> $\phi 1.2 \mathrm{~mm}$ <br> $\phi 2.0 \mathrm{~mm}$ |
|  | Finest spot lens | FX-MR3 |  | Extremely fine spot of $\phi 0.3 \mathrm{~mm} \phi 0.012$ in approx. achieved. <br> - Applicable fibers: FD-WG4, FD-G4, FD-EG1,FD-EG2, FD-EG3, FD-G6X, FD-G6 <br> - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ | Sensing ran <br> Fiber <br> FD-EG3 <br> FD-EG2 <br> FD-EG1 <br> FD-WG4/G4G6XV66 | nge (Note 1) <br> Distance to focal point $\begin{aligned} & 7.5 \pm 0.5 \mathrm{~mm} \\ & 7.5 \pm 0.5 \mathrm{~mm} \\ & 7.5 \pm 0.5 \mathrm{~mm} \\ & \hline 7.5 \pm 0.5 \mathrm{~mm} \\ & \hline \end{aligned}$ | Spot diameter $\phi 0.15 \mathrm{~mm}$ approx. $\phi 0.2 \mathrm{~mm}$ approx. $\phi 0.3 \mathrm{~mm}$ approx. $\phi 0.5 \mathrm{~mm}$ approx. |
|  | Finest spot lens | FX-MR6 |  | Extremely fine spot of $\phi 0.1 \mathrm{~mm} \phi 0.004$ in approx. achieved. <br> - Applicable fibers: FD-WG4, FD-G4, FD-EG1,FD-EG2, FD-EG3, FD-G6X, FD-G6 <br> - Ambient temperature: -20 to $+60^{\circ} \mathrm{C}-4$ to $+140^{\circ} \mathrm{F}$ | Sensing ran  <br> Fiber  <br> FD-EG3  <br> FD-EG2  <br> FD-EG1  <br> FD-WG4444G6XXG6  | nge (Note 1) <br> Distance to focal point <br> $7 \pm 0.5 \mathrm{~mm}$ | Spot diameter <br> $\phi 0.1 \mathrm{~mm}$ approx. <br> $\phi 0.15 \mathrm{~mm}$ approx. <br> $\phi 0.2 \mathrm{~mm}$ approx. <br> $\phi 0.4 \mathrm{~mm}$ approx. |
|  | Zoom lens $\binom{$ Side-view }{ type } | FX-MR5 |  | FX-MR2 is converted into a side-view type and can be mounted in a very small space. <br> - Applicable fibers: FD-WG4, FD-G4 <br> - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ | Sensing ran <br> Screw-in depth <br> 8 mm <br> 10 mm <br> 14 mm | Distance to focal point <br> 13 mm approx. <br> 15 mm approx. <br> 30 mm approx. | Spot diameter <br> $\phi 0.5 \mathrm{~mm}$ <br> $\phi 0.8 \mathrm{~mm}$ <br> $\phi 3.0 \mathrm{~mm}$ |

Note: The sensing ranges are the values when used in combination with red LED type amplifier. Please contact our office for details on sensing distances for other types of amplifier.

FX-301

FIBER OPTIONS

Others


Notes: 1) Do not bend the sleeve part of any side-view type fiber or ultra-small diameter head type fiber.
2) Refer to $p .332 \sim$ for details of the universal sensor mounting stand.
3) The conventional FX-AT10 fiber attachment is attached with the FD-N4.

## Protective tube



Fiber bender

- FB-1


Universal sensor mounting stand

- MS-AJ1-F
- MS-AJ2-F

Using the arm which enables adjustment in the horizontal direction, sensing can also be done from above an assembly line.


Note: The above figure is MS-AJ1-F. The mounting base of MS-AJ2-F has a different shape.

## Fiber cutter

- FX-CT2

- FX-CT1



## Fiber attachment

It's possible to simultaneously cut two fibers to the same length
Each fiber (with some exceptions) has a newly developed two-in-one fiber attachment (FX-AT3/AT4/AT5/AT6) which enables two fibers to be cut simultaneously to the same length with the new fiber cutter (FX-CT2). Also, since the fibers can be attached to the amplifier while being fixed in position in the two-in-one fiber attachment, sensitivity changes resulting from variation in the amount of fiber insertion do not occur.


FX-AT2


FX-AT3


FX-AT4/AT5/AT6


## SPECIFICATIONS

Amplifiers

| Ite | Type | NPN output |  |  |  | PNP output |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Red LED | Blue LED | Green LED | Infrared LED | Red LED | Blue LED | Green LED | Infrared LED |
|  | Model No. | FX-301 | FX-301B | FX-301G | FX-301H | FX-301P | FX-301BP | FX-301GP | FX-301HP |
| Supply voltage |  | 12 to 24 V DC $\pm 10 \%$ Ripple P-P $10 \%$ or less |  |  |  |  |  |  |  |
| Power consumption |  | <Red LED / Infrared LED type> <br> Normal operation: 960 mW or less $\binom{$ Current consumption 40 mA or less at }{24 V supply voltage } <br> ECO mode: 600 mW or less $\binom{$ Current consumption 25 mA or less at 24 V}{ supply voltage } |  |  |  | <Blue LED / Green LED type> <br> Normal operation: 720 mW or less $\binom{$ Current consumption 30 mA or less at }{24 V supply voltage } <br> ECO mode: 430 mW or less $\binom{$ Current consumption 18 mA or less at 24 V}{ supply voltage } |  |  |  |
| Output |  | NPN open-collector transistor <br> - Maximum sink current:100 mA $\binom{50 \mathrm{~mA}$, if five, or more, amplifiers }{ are connected in cascade. } <br> - Applied voltage: 30 V DC or less (between output and 0 V ) <br> - Residual voltage: 1.5 V or less (at 100 mA (at 50 mA , if five, or more, amplifiers are connected in cascade) sink current. |  |  |  | PNP open-collector transistor <br> - Maximum source current: 100 mA $\binom{50 \mathrm{~mA}$, if five, or more, amplifiers }{ are connected in cascade. } <br> - Applied voltage: 30 V DC or less (between output and +V ) <br> - Residual voltage: 1.5 V or less $\left(\begin{array}{l}\text { at } 100 \mathrm{~mA} \text { (at } 50 \mathrm{~mA} \text {, if five, or more, } \\ \text { amplifiers are connected in cascade) } \\ \text { source current. }\end{array}\right)$ |  |  |  |
|  | Utilization category | DC-12 or DC-13 |  |  |  |  |  |  |  |
|  | Output operation | Selectable either Light-ON or Dark-ON, with jog switch |  |  |  |  |  |  |  |
|  | Short-circuit protection | Incorporated |  |  |  |  |  |  |  |
| Response time |  | $150 \mu$ s or less (FAST), $250 \mu$ s or less [STD / S-D (Red LED type only)], 2 ms or less (LONG) selectable with jog switch |  |  |  |  |  |  |  |
| Sensitivity setting |  | 2-level teaching / Limit teaching / Manual adjustment / Full auto-teaching (excluding red LED type) |  |  |  |  |  |  |  |
| Operation indicator |  | Orange LED (lights up when the output is ON) |  |  |  |  |  |  |  |
| Stability indicator |  | Green LED (lights up under stable light received condition or stable dark condition) |  |  |  |  |  |  |  |
| MODE indicator |  | RUN: Green LED, TEACH • ADJ - L/D ON • TIMER • PRO: Yellow LED |  |  |  |  |  |  |  |
| Digital display |  | 4 digit red LED display |  |  |  |  |  |  |  |
| Fine sensitivity adjustment function |  | Incorporated |  |  |  |  |  |  |  |
| Timer function |  | Incorporated with variable ON-delay / OFF-delay / ONE SHOT timer, switchable either effective or ineffective. (timer period: 0.5 to 500 ms approx.) |  |  |  |  |  |  |  |
| Automatic interference prevention function |  | Incorporated (Up to four sets of fiber heads can be mounted close together) (Note 1) |  |  |  |  |  |  |  |
|  | Pollution degree | 3 (Industrial environment) |  |  |  |  |  |  |  |
|  | Ambient temperature | -10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ <br> (If 4 to 7 units are connected in cascade: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, ) (if 8 to 16 units are connected in cascade: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113^{\circ} \mathrm{F}$ ) (No dew condensation or icing allowed), <br> Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$ |  |  |  |  |  |  |  |
|  | Ambient humidity | 35 to 85 \% RH, Storage: 35 to 85 \% RH |  |  |  |  |  |  |  |
|  | Ambient illuminance | Sunlight: $10,000 \mathrm{~lx}$ at the light-receiving face, Incandescent light: $3,000 \ell \mathrm{x}$ at the light-receiving face |  |  |  |  |  |  |  |
|  | EMC | Red LED type: EN 50081-2, EN 50082-2, EN 60947-5-2 Blue / green / infrared LED type: EN 60947-5-2 |  |  |  |  |  |  |  |
|  | Voltage withstandability | $1,000 \mathrm{~V}$ AC for one min. between all supply terminals connected together and enclosure (Note 2) |  |  |  |  |  |  |  |
|  | Insulation resistance | $20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 2) |  |  |  |  |  |  |  |
|  | Vibration resistance | 10 to 150 Hz frequency, 0.75 mm 0.030 in amplitude in $\mathrm{X}, \mathrm{Y}$ and Z directions for two hours each |  |  |  |  |  |  |  |
|  | Shock resistance | $98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in $\mathrm{X}, \mathrm{Y}$ and Z directions for five times each |  |  |  |  |  |  |  |
| Emitting element (modulated) |  | Red LED | Blue LED | Green LED | Infrared LED | Red LED | Blue LED | Green LED | Infrared LED |
| Material |  | Enclosure: Heat-resistant ABS, Case cover: Polycarbonate, Switch: Acrylic |  |  |  |  |  |  |  |
| Connecting method |  | Connector (Note 3) |  |  |  |  |  |  |  |
| Cable extension |  | Extension up to total 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable. |  |  |  |  |  |  |  |
| Weight |  | 25 g approx. |  |  |  |  |  |  |  |

Notes: 1) When the power supply is switched on, the emission timing are automatically set for interference prevention.
2) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.
3) The cable for amplifier connection is not supplied as an accessory. Make sure to use the optional quick-connection cable given below. Main cable ( 3 -core): CN-73-C1 (cable length 1 m 3.281 ft ), CN-73-C2 (cable length 2 m 6.562 ft ), CN-73-C5 (cable length 5 m 16.404 ft ) Sub cable (1-core): CN-71-C1 (cable length 1 m 3.281 ft ), CN-71-C2 (cable length 2 m 6.562 ft ), CN-71-C5 (cable length 5 m 16.404 ft )

## SPECIFICATIONS

## Fibers

| Item Type |  | Standard | Flexible |
| :---: | :---: | :---: | :---: |
| Allowable bending radius |  | R25 mm R0.984 in or more [Sleeve of a head with sleeve:R10 mm R0.394 in or more (Note 1)] | R4 mm R0.157 in or more |
| Bending durability |  |  | 1 million times or more (at R10 mm R0.394 in, FT.P40/P2 and FD-P40/P2: at R4 mm R0. 157 in) |
| Ambient temperature |  | $\begin{gathered} \quad-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F} \\ \left(\begin{array}{l} \text { FT-SFM2SV2: }-20 \text { to }+70^{\circ} \mathrm{C}-4 \text { to }+158^{\circ} \mathrm{F} \\ \text { FT-V22, FD-SFM2SV2: }-20 \text { to }+60^{\circ} \mathrm{C}-4 \text { to }+140^{\circ} \mathrm{F} \\ \text { FT-V41, FD-V41, FT-V10: }-40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to }+140^{\circ} \mathrm{F} \end{array}\right) \end{gathered}$ | $\begin{aligned} & -40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F} \\ & \binom{\text { FT-Z8 } \square, \text { FT-P60, FT-PS1, FD-P60, FD-P50: }}{-40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to }+140^{\circ} \mathrm{F}} \end{aligned}$ |
| Ambient humidity |  | 35 to 85\%RH (No dew condensation or icing allowed) |  |
|  | Fiber core | Acrylic |  |
|  | Sheath | Polyethylene (FT-V22: Polyolefin) | Vinyl chloride (FT-PS1: Polyethylene, FD-P2: Vinyl chloride and Polyurethane) |
|  | Fiber head | Brass (Nickel plated) $\left(\begin{array}{l}\text { FT-SFM2L/T80/SFM2/SNFM2/SFM2SV2/V22/V41, } \\ \text { FD-T80/T40/S80/SNFM2/SFM2SV2/V41 and Sleeve: Stainless steel (SUS) } \\ \text { FT-FM10L: ABS, Lens of FT-FM10L/SFM2L/V10: Acrylic } \\ \text { FT-V10: Stainless steel (SUS) and Polycarbonate }\end{array}\right)$ | Stainless steel (SUS) <br> (FT/FD-P80, FT-P60: Brass (Nickel plated) <br> Case of FT-Z8 $\square$ : Polycarbonate <br> Lens of FT-Z8H/Z8E, Front film of FT-Z8: Polyester) |

Accessories (Note 2)

All fibers (except for FT-NB8/N8 and FD-N8/N4): 1 fiber attachment set Free-cut type fibers (except for FT-NB8/N8 and FD-N8/N4): FX-CT2 (fiber cutter) 1 pc. Threaded head fibers: Nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.)

All fibers: 1 fiber attachment set. (except for FT-P80 and FD-P80) Free-cut type fibers: FX-CT2 (fiber cutter) 1 pc. (FT/FD-P80: FX-CT1 1 pc.) Threaded head fibers: Nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.), FT-Z8 $\square: 1$ set of mounting screw

Notes: 1) Sleeve part of side-view fiber cannot be bent.
2) The five types of attached fiber attachments (FX-AT2/AT3/AT4/AT5/AT6) described in this catalog are for use only with the FX-301/302/303/311 series. Refer to p. 76 for details 'FIBER OPTIONS'. Fiber attachment accessories are also supplied along with conventional amplifiers. Please contact our office for more details on these accessories.

| Item Type |  | Sharp bending |
| :---: | :---: | :---: |
| Allowable bending radius |  | R1 mm R0.039 in or more (FD-WG4/WSG4: R2 mm R0.079 in or more, Sleeve of FD-W44: R10 mm R0.394 in or more) |
| Ambient temperature |  | -40 to $+60^{\circ} \mathrm{C}-40$ to $+140{ }^{\circ} \mathrm{F}$ (FT-WA30/WA8/WKV8: -40 to $+55^{\circ} \mathrm{C}-40$ to $+131{ }^{\circ} \mathrm{F}$ ) |
| Ambient humidity |  | 35 to $85 \%$ RH (No dew condensation or icing allowed) |
|  | Fiber core | Acrylic |
|  | Sheath | Polyethylene |
|  | Fiber head | Stainless steel (SUS) (including sleeve) <br> FT-W8/W4, FD-W8/W44/WG4: Brass (Nickel plated) <br> Case of FT-WA30/WA8/WZ8 $\square$, Lens of FT-WS8L and Resin part of FT-WKV8: Polycarbonate, Lens of FT-WA30: Norbornene resin Lens of FT-WA8: Polyolefin, Lens of FT-WZ8H/WZ8E, Reflector of FT-WZ8E and Prism of FT-WKV8: Acrylic, Reflector of FT-WZ8: Polycarbonate, FD-WL41: Heat-resistant ABS, Front film of FD-WL41: Polyester, FD-WL42: Aluminum (Black ALMITE), Lens of FD-WKZ1: Optical lens |
| Accessories (Note) |  | All fibers: 1 fiber attachment set and FX-CT2 (fiber cutter) 1 pc. <br> Threaded fibers: Nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.) <br> FT-WA30: $0.5 \times 32 \mathrm{~mm} 0.020 \times 1.260$ in seal type slit mask 2 pcs. <br> FT-WA8: $0.5 \times 12 \mathrm{~mm} 0.020 \times 0.472$ in seal type slit mask 2 pcs. and $1 \times 12 \mathrm{~mm} 0.039 \times 0.472$ in seal type slit mask 2 pcs. <br> FT-WZ8 $\square: 1$ set of mounting screw <br> FD-WKZ1: mounting bracket 1 pc . |

Note: The five types of attached fiber attachments (FX-AT2/AT3/AT4/AT5/AT6) described in this catalog are for use only with the FX-301/302/303/311 series. Refer to p .76 for details 'FIBER OPTIONS'. Fiber attachment accessories are also supplied along with conventional amplifiers. Please contact our office for more details on these accessories.

| Type <br> Item |  | Special use |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Wide beam | Array | Narrow beam | High precision |
| Allowable bending radius |  | FT-A30/A8: R10 mm R0.394 in or more FD-A15: R25 mm R0.984 in or more | R25 mm R0.984 in or more | R25 mm R0.984 in or more (FT-KV1: R10 mm R0. 394 in or more) | FD-EG2/EG3: R10 mm R0. 394 in or more FD-G4/G6/EG1: R25 mm R0.984 in or more |
| Ambient temperature |  | FT-A30, FD-A15: -40 to $+60^{\circ} \mathrm{C}-40$ to $+140{ }^{\circ} \mathrm{F}$ FT.A8: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ | $\begin{aligned} & -40 \text { to }+70^{\circ} \mathrm{C} \\ & -40 \text { to }+158^{\circ} \mathrm{F} \end{aligned}$ | $\begin{aligned} & -40 \text { to }+60^{\circ} \mathrm{C} \\ & -40 \text { to }+140^{\circ} \mathrm{F} \end{aligned}$ | $\begin{gathered} -20 \text { to }+60^{\circ} \mathrm{C}-4 \text { to }+140^{\circ} \mathrm{F} \\ \binom{\text { FD-G4: }-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+1588^{\circ} \mathrm{F}}{\text { FD-G6: }-40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to }+140^{\circ} \mathrm{F}} \end{gathered}$ |
| Ambient humidity |  | 35 to $85 \%$ RH (No dew condensation or icing allowed) |  |  |  |
|  | Fiber core | Acrylic |  |  |  |
|  | Sheath | Polyethylene |  |  | Polyolefin (FD-G4/G6: Polyethylene) |
|  | Fiber head | $\begin{array}{c\|} \text { Polycarbonate } \\ \left(\begin{array}{c} \text { Lens of FT-A30, FD-A15: Norbornene resin } \\ \text { Lens of FT-A8: Polyolefin } \end{array}\right. \end{array}$ | Brass (Nickel plated) |  | Brass (Nickel plated) <br> [FD-G6: Stainless steel (SUS)] |

Accessories (Note)
: 1 fiber attachment set and
FX-CT2 (fiber cutter) 1 pc.
FT-A30: $0.5 \times 32 \mathrm{~mm} 0.020 \times 1.260$ seal type slit mask 2 pcs. FT-A8: $0.5 \times 12 \mathrm{~mm} 0.020 \times 0.472$ in seal type slit mask 2 pcs. and $1 \times 12 \mathrm{~mm} 0.039 \times 0.472$
seal type slit mask 2 pcs.

All fibers: 1 fiber attachment set
Free-cut type fibers: FX-CT2 (fiber cutter) 1 pc.
Threaded head fibers: Nuts 2 pcs. and toothed lock washer 1 pc.

## SPECIFICATIONS

## Fibers

| Item |  | Special use |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Ultra-small diameter | Fixed-focus reflective | Tough flexible |
| Allowable bending radius |  | FT-E12/E22: R5 mm R0. 197 in or more (Note 1) FD-E12: R10 mm R0. 394 in or more (Note 1) FD.E22IEN500S1/ENM1S1: R25 mm R0.984 in or more (Note 1) | R10 mm R0. 394 in or more <br> (FD-L43: R4 mm R0. 157 in or more) | R10 mm R0.394 in or more |
| Ambient temperature |  | $\begin{aligned} & \text { FT-E12/E22, FD-E22: }-40 \text { to }+70^{\circ} \mathrm{C} \\ & \text { FD-E12: }-40 \text { to }+60^{\circ} \mathrm{C}-4 \end{aligned}$ $\text { FD-EN500S1/ENM1S1: }-20 \text { to }+60^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { FD-L43: } 0 \text { to }+70^{\circ} \mathrm{C}+ \\ & \text { FD-L41/L42: }-40 \text { to }+60^{\circ} \mathrm{C} \\ & \text { FD-L4: }-40 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} -40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to }+140^{\circ} \mathrm{F} \\ \text { (FD-P81X: }-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F} \text { ) } \end{gathered}$ |
| Ambient humidity |  | 35 to $85 \%$ RH (No dew condensation or icing allowed) |  |  |
|  | Fiber core | Acrylic |  |  |
|  | Sheath | Polyolefin | Polyethylene (FD-L42: Vinyl chloride) | Polyethylene [FT-P81X: Vinyl chloride, Protective tube: Stainless steel (SUS)] |
|  | Fiber head | Brass (Nickel plated) <br> [Sleeve: Stainless steel (SUS)] | ```FD-L43/L41: Heat-resistant ABS FD-L4: ABS FD-L42: Aluminum (Black ALMITE) Lens of FD-L43/L4: Acrylic Front film of FD-L41: Polyester/``` | FT-P81X, FD-P81X: Brass (Nickel plated) FD-G6X: Stainless steel (SUS) |
|  | essories (Note 2) | All fibers: 1 fiber attachment set Threaded head fibers: Nuts 2 pcs. and toothed lock washer 1 pc. | All fibers: 1 fiber attachment set and FX-CT2 (fiber cutter) 1 pc . <br> FD-L4: M2.6 (length 12 mm 0.472 in ) screws with washers 2 pcs. and nuts 2 pcs. | All fibers: 1 fiber attachment set, nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.) FD-G6X: FX-CT2 (fiber cutter) 1 pc. |

Notes: 1) Sleeve part cannot be bent.
2) The five types of attached fiber attachments (FX-AT2/AT3/AT4/AT5/AT6) described in this catalog are for use only with the FX-301/302/303/311 series. Refer to p. 76 for details 'FIBER OPTIONS'. Fiber attachment accessories are also supplied along with conventional amplifiers. Please contact our office for more details on these accessories.

| Tymer Model No. |  | Special use |  |
| :---: | :---: | :---: | :---: |
|  |  | Liquid level sensing |  |
|  |  | FD-F8Y | FD-F4 $\square$ /F9 $\square$ |
| Allowable bending radius |  | Protective tube: R40 mm R1.575 in or more Fiber: R15 mm R0.591 in or more | R10 mm R0. 394 in or more |
| Ambient temperature |  | -40 to $+125^{\circ} \mathrm{C}-40$ to $+257^{\circ} \mathrm{F}$ (Note 1) | -40 to $+100^{\circ} \mathrm{C}-40$ to $+212^{\circ} \mathrm{F}$ (Note 1) |
| Ambient humidity |  | 35 to $85 \%$ RH (No dew condensation or icing allowed) |  |
|  | Fiber core | Polycarbonate |  |
|  | Sheath | Polypropylene <br> (Protective tube: Fluorine resin) | Polyethylene |
|  | Fiber head |  | Polyetherimide (Lens: Polycarbonate) |
| Acc | essories (Note 2) | 1 fiber attachment set FX-CT2 (fiber cutter) 1 pc. | 1 fiber attachment set, FX-CT2 (fiber cutter) 1pc. Tying bands 4 pcs., anti-slip tubes 2 pcs. |

Notes: 1) With the liquid sensing fiber, make sure that the temperature of the liquid is also within the ambient temperature range.
2) The five types of attached fiber attachments (FX-AT2/AT3/AT4/AT5/AT6) described in this catalog are for use only with the FX-301/302/303/311 series. Refer to p.76 for details 'FIBER OPTIONS'. Fiber attachment accessories are also supplied along with conventional amplifiers. Please contact our office for more details on these accessories.

| Item |  | Environment resistant |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Heat-resistant |  |  |  |  | Chemical-resistant | Vacuum |
|  |  | $350{ }^{\circ} \mathrm{C} 662{ }^{\circ} \mathrm{F}$ type | $300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ type | $200^{\circ} \mathrm{C} 392^{\circ} \mathrm{Ftype}$ | $180^{\circ} \mathrm{C} 356^{\circ} \mathrm{Ftype}$ | $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$ type |  |  |
| Allowable bending radius |  | R25 mm R0.984 in or more(FT-H20W-■: R10 mm R0.394 in or more, Sleeve of a head with sleeve: R10 mm R0.394 in or more) |  |  |  |  | R30 mm R1. 181 in or more (FT-Z802Y: R25 mm R0.984 in or more) | R200 mm R7.874 in or more (FT-60V: R30 mm R1. 181 in or more) |
| Ambient temperature |  | $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \\ & \text { (Note 1, 2) } \end{aligned}$ | $\begin{aligned} & -60 \text { to }+300^{\circ} \mathrm{C} \\ & -76 \text { to }+572^{\circ} \mathrm{F} \\ & \text { (Note } 1,2,3 \text { ) } \end{aligned}$ | $\begin{aligned} & -60 \text { to }+200^{\circ} \mathrm{C} \\ & -76 \text { to }+392^{\circ} \mathrm{F} \\ & \text { (Note 2) } \end{aligned}$ | $-60 \text { to }+180^{\circ} \mathrm{C}$ <br> -76 to $+356^{\circ} \mathrm{F}$ <br> (Note 2, 4) | $\begin{aligned} & -60 \text { to }+130^{\circ} \mathrm{C} \\ & -76 \text { to }+266^{\circ} \mathrm{F} \end{aligned}$ | $\begin{aligned} & -40 \text { to }+115^{\circ} \mathrm{C}-40 \text { to }+239^{\circ} \mathrm{F} \\ & \left(\text { FT- } 2802 \mathrm{Y}: 0 \text { to }+60^{\circ} \mathrm{C}+14 \text { to }+140^{\circ} \mathrm{F}\right) \end{aligned}$ | $\begin{aligned} & -40 \text { to }+120^{\circ} \mathrm{C} \\ & -40 \text { to }+248^{\circ} \mathrm{F} \end{aligned}$ |
| Ambient humidity |  | 35 to $85 \%$ RH (No dew condensation or icing allowed) |  |  |  |  |  |  |
|  | Fiber core | Multi-component glass (Note 3) |  |  | Silicone | Acrylic |  | Quartz glass (Note 3) |
|  | Sheath | Stainless steel (SUS) |  | Silicone \Inside stainless steel) (SUS) spiral tube FD-H20-21: Stainless steel (sus) FT-H2OW- $\square$ : Fluorine resin | Fluorine resin |  | Protective tube: Fluorine resin Sheath: Polypropylene (Sheath of FT-Z802Y: Fluorine resin) | Fluorine resin |
|  | Fiber head |  |  | Brass (Nickel plated) FD-H20:21: Stainesss seel (sus) | Stainless steel (SUS) | Brass (Nickel plated) |  | Aluminum |
| Accessories (Note 5) |  | FT-H20W- $\square$, FD-H18-L31 and FT-H13-FM2: 1 fiber attachment set Free-cut type fibers: FX-CT2 (fiber cutter) 1 pc. <br> Threaded head fibers: Nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.) |  |  |  |  | 1 fiber attachment set FX-CT2 (fiber cutter) 1 pc. | Nuts 2 pcs. (thru-beam type: 4 pcs.) and toothed lock washer 1 pc. (thru-beam type: 2 pcs.) |
| Notes: 1) If the fiber is used below $-30^{\circ} \mathrm{C}-22^{\circ} \mathrm{F}$, its maximum resistable temperature drops to $+200^{\circ} \mathrm{C}+392^{\circ} \mathrm{F}$. If the side-view lens FX -SV1 is put on the fiber head, the allowable maximum temperature drops to $+300^{\circ} \mathrm{C}+572^{\circ} \mathrm{F}$. (The ambient temperature range of FX-SV1 is from -60 to $+300{ }^{\circ} \mathrm{C}-76$ to $+572{ }^{\circ} \mathrm{F}$.) <br> 2) The ambient temperature of heat-resistant $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ type, $300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ type, $200{ }^{\circ} \mathrm{C} 392^{\circ} \mathrm{F}$ type and $180^{\circ} \mathrm{C} 356{ }^{\circ} \mathrm{F}$ type fibers are the value in dry condition. In humid environment, the ambient temperature differs. (For a high humidity of $85 \% \mathrm{RH}$, the ambient temperature is 0 to $+40^{\circ} \mathrm{C}+14$ to $104^{\circ} \mathrm{F}$.) <br> 3) If the fiber material is quartz glass or multi-component glass, keep it away from vibration or impact. <br> 4) The normal temperature for continuous usage or storage should be -60 to $+150{ }^{\circ} \mathrm{C}-76$ to $+302^{\circ} \mathrm{F}$. <br> 5) The five types of attached fiber attachments (FX-AT2/AT3/AT4/AT5/AT6) described in this catalog are for use only with the FX-301/302/303/311 series. Refer to p.76 for details 'FIBER OPTIONS'. Fiber attachment accessories are also supplied along with conventional amplifiers. Please contact our office for more details on these accessories. |  |  |  |  |  |  |  |  |

FX-301

I/O CIRCUIT AND WIRING DIAGRAMS

## NPN output type

## I/O circuit diagram



Internal circuit $\longleftrightarrow$ Users' circuit
Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). 2) 50 mA max., if five amplifiers, or more, are connected together.

$$
\begin{gathered}
\text { Symbols ... D : Reverse supply polarity protection diode } \\
\text { ZD: Surge absorption zener diode } \\
\mathrm{Tr}: \text { NPN output transistor }
\end{gathered}
$$

## Wiring diagram



Note: The quick-connection sub cable does not have brown lead wire and blue lead wire.

## Terminal arrangement diagram



## PNP output type

## I/O circuit diagram



Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue), 2) 50 mA max., if five amplifiers, or more, are connected together.

> Symbols ... D : Reverse supply polarity protection diode ZD: Surge absorption zener diode Tr : PNP output transistor

## Wiring diagram



Note: The quick-connection sub cable does not have brown lead wire and blue lead wire.

## Terminal arrangement diagram



## Parallel deviation

FT-FM10L Thrubeam type
FT-SFM2L
Thru-beam typ $\qquad$ FT-B8
Thru-beam type
FT-NB8 Thru-beam type

 FT.F80 FT-SFM2






FT-V10 Thru-beam type


FT-V22

## Horizontal direction




Operating point $\ell(\mathrm{mm}$ in)

FT-SFM2SV2 Thru-beam type


FT-V41 Thru-beam type


Vertical direction


FX-301 SENSING CHARACTERISTICS (TYPICAL)

## Parallel deviation



FT-WZ8H Thru-beam type


FT-WZ8
Thru-beam type


FT-WS8L Thru-beam type Operating point $\ell(\mathrm{mm}$ in)


FT-WA8
FT-A8

Operating point $\ell(\mathrm{mm}$ in)
Thru-beam type

FZ-WZ8E Thru-beam type


Vertical direction


FT-WKV8 Thru-beam type

Horizontal direction


Left $\_$Center $\longrightarrow$ Right
FT-W8 FT-WS8 Thru-beam type FT-WS3 Thru-beam type Vertical direction


FT-W4 FT-WS4 Thru-beam type


Operating point $\ell(\mathrm{mm}$ in)




FX-301

## Parallel deviation

FT-KV1 Thru-beam type


## FT-KV8

 Thru-beam typeFT-E12

## Horizontal direction




Operating point $\ell$ ( mm in)
FT-P81X

Vertical direction


FT-H35-M2
FT-H35-M2
FT-H35-M2S6 Thru-beam type


FT-H2OW-M1 Thru-beam type
FT-H2OW-M2


FT-H20-M1 Thrubeam type



FT-V8Y Thru-beam type

Horizontal direction


Vertical direction


## Parallel deviation



Parallel deviation with FX-LE1 (expansion lens) applied on both sides


Parallel deviation with FX-LE2 (super-expansion lens) applied on both sides


## FX-301

## Parallel deviation with FX-LE2 (super-expansion lens) applied on both sides

FT-H2OW-M2
Thru-beam type
FT-H20-M1
Thru-beam type
FT-H13-FM2 Thru-beam type


Parallel deviation with FX-SV1 (side-view lens) applied on both sides


FT-P80 Thru-beam type


FT-H20W-M2 Thru-beam type


FT-H35-M2 Thru-beam type


## FT-H20-M1 Thru-beam type




## Sensing fields



FD-SFM2SV2 Reflective type


## FD-WKZ1 Reflective type

## Horizontal direction



## Vertical direction




FD-V41 Reflective type

## Horizontal direction



FD-W8 FD-WT8
FD-WS8

## Vertical direction





## FX-301

SENSING CHARACTERISTICS (TYPICAL) The following sensing characterisics pertain to the red LED type. Please contact our ofice for the sensing characteristics pertaining corresponding to types other than the red LED or to types not mentioned here.



## FD-A15

 Reflective type
## Horizontal direction



Left ${ }^{0.197}$ Center $\xrightarrow{0.197}$ Right
Operating point $\ell$ ( mm in)
FD-G4 Reflective type

Vertical direction


Operating point $\ell$ ( mm in)
FD-G6 Reflective type
-


Left $\longleftarrow$ Center $\longrightarrow$ Right
FD-AFM2 $\quad$ Reflective type
FD-AFM2E

Horizontal direction


Left $\longleftarrow$ Center $\longrightarrow$ Right
Operating point $\ell$ ( mm in)
FD-EG1 Reflective type


Left $\_$Center $\longrightarrow$ Right
$\square$



 SENSING CHARACTERISTICS (TYPICAL) characteristics pertaining corresponding to types other than the red LED or to types not mentioned here.

Sensing fields






FD-H13-FM2 Reflective type




Refer to p.1135~ for general precautions, and to the 'PRO Mode Operation Guide' or 'SUNX fiber sensor home page' (http://www.fiber-sensor.com) for details pertaining to operating instructions for the amplifier.

## Amplifier



This product is not a safety sensor. Its use is not intended or designed to protect life and prevent body injury or property damage from dangerous parts of machinery. It is a normal object detection sensor.

## Mounting

## How to mount the amplifier

(1) Fit the rear part of the amplifier on a 35 mm 1.378 in width DIN rail.
(2) Press down the front part of the mounting section of the amplifier on


35 mm 1.378 in width DIN rail the 35 mm 1.378 in width DIN rail.

## How to remove the amplifier

(1) Push the amplifier forward.
(2) Lift up the front part of the amplifier to remove it.


Note: Take care that if the front part is lifted without pushing the amplifier forward, the hook on the rear portion of the mounting section is likely to break.

## How to connect the fiber cables

(1) Snap the fiber lock lever down.
(2) Insert fiber cables slowly into the inlets until they stop. (Note 1)
(3) Return the fiber lock lever to the original position, till it stops.


Notes: 1) In case the fiber cables are not inserted to a position where they stop, the sensing range reduces.
2) With the coaxial reflective type fiber, such as, FD-G4 or FD-FM2, insert the single-core fiber cable into the beam-emitting inlet and the multi-core fiber cable into the beam-receiving inlet. If they are inserted in reverse, the sensing accuracy will deteriorate.

## Connection

- Make sure that the power supply is off while connecting or disconnecting the quick-connection cable.


## Connection method

(1) Holding the connector of the quick-connection cable, align its projection with the groove at the top portion of the amplifier connector.
(2) Insert the connector till a click is felt.


## Disconnection method

(1) Pressing the projection at the top of the quick-connection cable connector, pull out the connector.
Note: Take care that it the connector is pulled out without pressing the projection, the projection may break. Do not use a quick-connection cable whose projection has broken. Further, do not pull by holding the cable, as
 this can cause a cable-break.

## Part description



## Cascading amplifiers

- Make sure that the power supply is off while cascading or removing the amplifier.
- Make sure to check the allowable ambient temperature, as it depends on the number of amplifiers connected in cascade. - In case two, or more, amplifiers are connected in cascade, make sure to mount them on a DIN rail.
- When connecting in cascade, mount the amplifiers close to each other, fitting them between the optional end plates (MS-DIN-E) mounted at the two ends.
- When the amplifiers move on the DIN rail depending on the attaching condition, fitting them between the optional end plates (MS-DIN-E) mounted at the two ends.
- Up to maximum 15 amplifiers can be added (total 16 amplifiers connected in cascade.)
-When connecting more than two amplifiers in cascade, use the sub cable (CN-71-C $\square$ ) as the quick-connection cable for the second amplifier onwards.
- Between the FX-301B(P)/G(P)/H(P) and the FX-301(P), the setting status copy function via communication signal cannot be used. If coupling these, please arrange identical models one at a time.


## Cascading method

(1) Mount the amplifiers, one by one, on the 35 mm 1.378 in width DIN rail.
(For details, refer to 'Mounting'.)
(2) Slide the sub units next to the main unit, and connect the quick-connection cables.
(3) Mount the optional end plates (MS-DIN-E) at both the ends to hold the amplifiers between their flat sides.
(4) Tighten the screws to fix the end plates (MS-DIN-E).


## Dismantling

(1) Loosen the screws of the end plates (MS-DIN-E).
(2) Remove the end plates (MS-DIN-E).


## Operation procedure

- When the power supply is switched on, communication self-check is carried out and normal condition is displayed [MODE indicator / RUN (green) lights up and the digital display shows incident light intensity].
-When MODE key is pressed, the mode changes as per the diagram below.


When MODE key is pressed for 2 sec., or more, the sensor returns to the RUN mode. Cancellation is possible by pressing MODE key during setting.

Refer to p.1135~ for general precautions, and to the 'PRO Mode Operation Guide' or 'SUNX fiber sensor home page' (http://www.fiber-sensor.com) for details pertaining to operating instructions for the amplifier.

## Amplifier

## Teaching

- The threshold values can be set by 2-level teaching, limit teaching or fullauto teaching, when the MODE indicator / TEACH (yellow) lights up.


## In case of 2-level teaching

-This is the method of setting the threshold value by teaching two levels, corresponding to the object present and object absent conditions. Normally, setting is done by this method.

| Step | Description | Display |
| :---: | :---: | :---: |
| (1) | Set the fiber within the sensing range. <br> Press MODE key to light up MODE indicator / TEACH (yellow). | 1797 <br> $10^{7} 96$ |
| (2) | Press jog switch in the object present condition. <br> If the teaching is accepted, the read incident light intensity blinks in the digital display. | 507 |
| (3) | MODE indicator / TEACH (yellow) blinks. <br> Press jog switch in the object absent condition. condition | $\begin{aligned} & 1791 \\ & 16^{2} 9 \\ & \hline \end{aligned}$ |
| (4) | If the teaching is accepted, the read incident light intensity blinks in the digital display and the threshold value is set at the mid-value between the incident light intensities in the object present and the object absent conditions. After this, the judgment on the stability of sensing is displayed. <br> - In case stable sensing is possible: ' Tooot' is displayed. Stability indicator (green) blinks. <br> - In case stable sensing is not possible: '湖処’ blinks. Stability indicator (green) is off. | $010100^{\circ}$ <br> 01810 |
| (5) | The threshold value is displayed. | (197181 |
| (6) | '. . . . ' ' blinks in the digital display. | $\cdots$ |
| (7) | The incident light intensity appears in the digital display and the setting is complete. |  |

Note: Do not move or bend the fiber cable after the sensitivity setting. Detection may become unstable.

## In case of full auto-teaching $\quad \mathbf{F X}-301 \mathrm{~B}(\mathbf{P}) / \mathbf{G}(\mathbf{P}) / \mathbf{H}(\mathbf{P})$ only

- Full auto-teaching is used when it is desired to set the threshold value without stopping the assembly line, with the object in the moving condition.

| Step | Description | Display |
| :---: | :---: | :---: |
| (1) | Set the fiber within the sensing range. <br> Press MODE key to light up MODE indicator / TEACH (yellow). | $16^{9} 974$ |
| (2) | Press the jog switch continuously for 0.5 sec. or more with the object moving on the assembly line. (The incident light intensity is displayed during sampling.) |  |
| (3) | ' Buto ' is displayed on the digital display. Release the jog switch when the object has passed. | Henion |
| (4) | If the teaching is accepted, the read incident light intensity blinks in the digital display and the threshold value is set at the mid-value between the incident light intensities in the object present and the object absent conditions. After this, the judgment on the stability of sensing is displayed. - In case stable sensing is possible: ' Tood' is displayed. Stability indicator (green) blinks; <br>  Stability indicator (green) is off. |  |
| (5) | The threshold value is displayed. | \%191010 |
| (6) | '.... ' 'blinks in the digital display. |  |
| (7) | The incident light intensity appears in the digital display and the setting is complete. | 10939 |

Notes: 1) The threshold value's shit amount can be selected in PRO mode. Reter to the 'SUNX fiber sensor home page' (htpp:/www.fiber-
 2) Do not move or bend the fiber cable atter the sensitivity setting. Detection may become unstable.

## In case of limit teaching

- This is the method of setting the threshold value by teaching only the object absent condition (stable incident light condition). This is used for detection in the presence of a background body or for detection of small objects.


Notes: 1) The approx. $15 \%$ amount of shift is the initial value. The amount of shift can be changed in the PRO mode from approx. 5 to $80 \%$ ( $5 \%$ step). Refer to the 'Fiber Sensor Guide Book' or 'SUNX fiber sensor home page’ (http://www.fiber-sensor.com) for more details pertaining to setting instructions.
2) Do not move or bend the fiber cable after the sensitivity setting. Detection may become unstable.

Please refer to p. 624 for setting of threshold value when used in combination with liquid level sensing fiber FD-F8Y and to p. 618 for setting of threshold value when used in combination with pipe-mountable liquid level sensing fiber FD-F4 $\square$, FD-F9 $\square$.

## Amplifier

Threshold value fine adjustment

| Step | Description |
| :--- | :--- |
| Press MODE key to light up |  |
| MODE indicator / ADJ (yellow). |  |
| (2) |  |
| In case the threshold value is to be increased <br> (sensitivity to be reduced), turn the jog <br> switch to the ' ' side to increase the <br> threshold value slowly. <br> If the jog switch is turned continuously <br> increases rapidly. <br> In case the threshold value is to be <br> decreased (sensitivity to <br> increased), turn the jog switch to the <br> '- side to decrease the threshold <br> value slowly. If the jog switch is turned continuously to <br> the' - 'side, the threshold value decreases rapidly. |  |
| When jog switch is pressed, <br> the threshold value is confirmed. |  |

Output operation setting

| Step | Description | Display |
| :---: | :---: | :---: |
| (1) | Press MODE key to light up MODE indicator / L/D ON (yellow). | Displays present setting |
| (2) | If the jog switch is turn to the ' + ' or ' - ' direction, the output operation setting will change. | Light state <br> Dark state |
| (3) | When jog switch is pressed, the threshold value is confirmed. | $\square$ <br> Displays selected setting |

## Timer operation setting

- The setting for whether the timer is used or not can be done when MODE indicator / TIMER (yellow) lights up.
- 10 ms OFF-delay (initial value) timer is automatically set when the timer is set to be used.
- Further, an OFF-delay (initial value) which is useful when the response of the connected device is slow, etc., an ONdelay which is useful to detect only objects taking a long time to travel, and ONE SHOT, which is useful when the input specifications of the connected device require a signal of a fixed width, are possible with the FX-301 series. Refer to the 'Fiber Sensor Guide Book' or 'SUNX fiber sensor home page' (http://www fiber-sensor.com) for the setting method of the OFF-delay, ON-delay and ONE SHOT timer intervals.


Note: The OFF-delay timer interval set in the PRO mode is displayed.
Refer to the 'Fiber Sensor Guide Book' or 'SUNX fiber sensor home page' (http://www fiber-sensor.com) for more details.

## Key-lock function

- With the $\mathbf{F X}-\mathbf{3 0 1 B}(\mathbf{P}) / \mathbf{G}(\mathbf{P}) / \mathbf{H}(\mathbf{P})$, if jog switch and MODE key are pressed for more than 3 sec . at the same time in 'RUN' mode condition, the key operations are locked, and only the threshold value confirmation function or the adjust function (valid only when the adjust lock function is canceled) is valid.
To cancel the lock function, press both the keys for more than 3 sec . once again.


## Wiring

- Make sure that the power supply is off while wiring.
- Verify that the supply voltage variation is within the rating.
- Take care that if a voltage exceeding the rated range is applied, or if an AC power supply is directly connected, the sensor may get burnt or damaged.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Take care that short-circuit or wrong wiring of the load may burn or damage the sensor.
- Do not run the wires together with high-voltage lines or power lines or put them in the same raceway. This can cause malfunction due to induction.
- Ensure that an isolation transformer is utilized for the DC power supply. If an auto transformer is utilized, the main amplifier or power supply may be damaged.
- Make sure to use the optional quick-connection cable for the connection of the amplifier. Extension up to total 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable. However, in order to reduce noise, make the wiring as short as possible.


## Others

- Do not use during the initial transient time ( 0.5 sec . approx.) after the power supply is switched on.
- Take care that the sensor is not directly exposed to fluorescent light from a rapid-starter lamp or a high frequency lighting device, as it may affect the sensing performance.
- This sensor is suitable for indoor use only.
- Avoid dust, dirt, and steam.
- Take care that the product does not come in direct contact with water, oil, grease, or organic solvents, such as, thinner, etc.
- This sensor cannot be used in an environment containing inflammable or explosive gasses.
- Never disassemble or modify the sensor.


## Amplifier

## PRO mode

- Refer to the 'Fiber Sensor Guide Book' for more details pertaining to the PRO mode settings and procedures.

- The above can also be download from 'SUNX fiber sensor homepage' (http://www.fiber-sensor.com)
- PRO settings can be done when MODE indicator / PRO (yellow) lights up.

Table for PRO mode settings


FX-301

## Fiber

## Mounting

- The tightening torque must not exceed the values given below.


## Mounting with a nut (threaded head type)



|  | Tightening torque |
| :---: | :---: |
| M3 | $0.39 \mathrm{~N} \cdot \mathrm{~m}$ |
| M4 | $0.58 \mathrm{~N} \cdot \mathrm{~m}$ $\left(\left.\begin{array}{l}350^{\circ} \mathrm{C} 662{ }^{\circ} \mathrm{F} \text { heat-resistant fiber and } \\ \text { FT-H20W-M } \square: 0.98 \mathrm{~N} \cdot \mathrm{~m}, \\ \text { FD-H35-20S: } 0.58 \mathrm{~N} \cdot \mathrm{~m}\end{array} \right\rvert\,\right.$ |
| $\begin{aligned} & \text { M5 } \\ & \text { M6 } \end{aligned}$ | $\begin{gathered} 0.98 \mathrm{~N} \cdot \mathrm{~m} \\ \binom{350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} \text { heat-resistant }}{\text { fiber: } 1.96 \mathrm{~N} \cdot \mathrm{~m}} \end{gathered}$ |
| M14 | $1.47 \mathrm{~N} \cdot \mathrm{~m}$ |

## Mounting with a set screw

Set screw (cup point) M3 or less


- Fibers for which the tightening section has been specified should be fixed at $\ell \mathrm{mm}$ from the tightening section tip. (However, for FT-K8, FT-KV8, FT-WKV8 and FT-V10 ' $\ell$ ') indicates the range over which tightening cannot be done.)


Notes 1): Excluding the sleeve
2): When installing, make sure to use screws smaller than the fiber diameter.

## Mounting array fiber

- Using M3 screws, the tightening torque should be $0.58 \mathrm{~N} \cdot \mathrm{~m}$ or less.



## Mounting FD-L4

Using M2.6 (length $12 \mathrm{~mm} 0.472 \mathrm{in})$ screws with washers (accessory), the tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less.


## Mounting FD-WL41 / FD-L41 and FD-WL42 / FD-L42

- Using M3 countersunk head screws, the tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less.

<FD-WL42 / FD-L42>



## Mounting FD-L43

- Using M3 countersunk head screws, the tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less.



## Fiber

## Mounting FT-Z8 $\square$ and FT-WZ8 $\square$

- Mount the fiber head by using the enclosed set of screws. The tightening torque should be $0.15 \mathrm{~N} \cdot \mathrm{~m}$ or less
- If the fiber head is mounted in places subject to vibrations or shocks, use a screw-locking adhesive, etc.
- Mount each fiber head as given below.
<FT-Z8 / FT-WZ8 (Front sensing type)>
In case of tapping the mounting section


In case of using attached screw and nut

<FT-Z8E / FT-WZ8E (Side sensing type)>
In case of tapping the mounting section


In case of using attached screw and nut

<FT-Z8H / FT-WZ8H (Top sensing type)>
In case of tapping the mounting section


In case of using attached screw and nut


## Mounting FT-Z802Y

- Using M3 pan head screws, the tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less.



## Mounting FD-WKZ1

## <lf not using the attached mounting brackets>

- Use M3 or less set screws (cup point), and affix the head within 15 mm 0.591 in from the tip of the fiber head. Do not exceed a torque of $0.3 \mathrm{~N} \cdot \mathrm{~m}$ when tightening.


## <lf using the attached mounting brackets>

- The head can be affixed even without using the set screws.
- If using the set screws, use M3 set screws (cup point) to affix and do not exceed a torque of $0.05 \mathrm{~N} \cdot \mathrm{~m}$ when tightening.


## Mounting FD-A15

- Using M3 screws, the tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less.


## Mounting FD-H30-L32 / FD-H18-L31

- Using M3 screws, the tightening torque should be $3 \mathrm{~N} \cdot \mathrm{~m}$ or less.


## Fiber

## Narrow beam type fiber mounting

- Take care that, since the aperture angle of this product is very narrow, the beam may not be received depending upon the setting. At the time of installation, determine a reference plane, as shown in the figure below, and taking sufficient care against beam misalignment or tilt, install the emitting and receiving fibers so that they are parallel.


## <FT-K8>


<FT-KV8 / FT-WKV8>


Thru-beam type wide beam fiber mounting

- Take care that, since the aperture angle of this product is very narrow, the beam may not be received depending upon the setting.
At the time of installation, determine a reference plane, as shown in the figure below, and taking sufficient care against beam misalignment or tilt, install the beamemitting and receiving fibers so that they are parallel.

- Install the fiber using M3 countersunk head screws. The tightening torque should be $0.3 \mathrm{~N} \cdot \mathrm{~m}$ or less. Further, when using the fiber at places having intense vibrations, use a screwlocking adhesive, etc.

- If mineral oil or solvent containing mineral oil component adheres to the sensing surface, the lens may be deformed. Take sufficient care to handle them.


## Method of fixing fiber cable

- If fixing the fiber cable in position, make sure that it is set in a manner as shown below, so that no load is applied on the fiber. (Excluding FT-H35-M2, FT-H35-M2S6, FD-H35-M2 and FD-H35-M2S6)


Cord hold-down clip, etc.


## Connection with reflective coaxial type fiber

- With reflective coaxial type fiber, insert the center fiber cable (single-core) into the beam-emitting inlet and the outer fiber cable (multi-core) into the beam-receiving inlet.
(FD-H35-M2 or FD-H20-M1 is marked ' $P$ ' on the beam-) emitting fiber cable and ' $D$ ' on the beam-receiving fiber cable.
FD-WG4, FD-WSG4 and FD-G4, FD-G6, FD-G6X are composed of beam-emitting and beam-receiving fiber cables that are different in diameter.
FD-G500, FD-EG1, FD-EG2, FD-EG3, FD-E22, FD-H20-21 and FD-ENM1S1 are marked $P$ on the beam-emitting fiber cable.


Notes: 1) In case the fiber cables are not inserted to a position where they stop, the sensing range reduces.
2) Before connecting fiber cables to the amplifier, mount the fiber attachments on their ends.

## Fiber cable bending radius

- If the fiber cable is bent at a smaller bending radius than allowable bending radius, the sensing range decreases due to beam attenuation.
For a allowable bending radius of $\mathbf{2 5 m m}$ ( 0.984 in )


Note: Please note that the $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ heat-resistant fibers, vacuumresistant and chemical-resistant fibers cannot bend less than the allowable bending radius.

## How to bend sleeve

- The bending radius must be R10 mm R0.394 in or more. Please bend gradually using the fiber bender (FB-1) or a round bar of $\phi 20 \mathrm{~mm} \phi 0.787$ in or more.


Note: Do not bend the sleeve of side-view type, narrow beam type, narrowview type and ultra-small diameter type fiber.

## Use of heat-resistant type fiber

- Use by keeping 150 mm 5.906 in, or more, of the heatresistant fiber cable part at normal temperature.

- Protect the amplifier from heat radiation or hot air.
- With the $350{ }^{\circ} \mathrm{C} 662{ }^{\circ} \mathrm{F}$ heat-resistant type fiber, the surface of the fiber head or the spiral may be discolored by heat. However, this does not affect its performance.


## Fiber

## Fiber attachments（FX－AT $\square$ ）

## Product outline

－When the beam－emitting and beam－receiving fiber cables are inserted into the fiber sensor amplifier（FX－301／302／303／311 series etc．），the enclosed fiber attachment （FX－AT2／AT3／AT4／AT5／AT6）facilitates insertion of the fiber cables and reduces the possibility of incorrect fiber cable insertion．

## Cautions

－Take care that FX－AT2，FX－AT3，FX－AT4，FX－AT5 and FX－AT6 cannot be used with fiber sensor amplifiers having a pitch， between the beam－emitting and the beam－receiving fiber cables，other than 7 mm 0.276 in ．In case of fiber sensor amplifiers having a pitch other than 7 mm 0.276 in，please use attachments FX－AT10 or FX－AT13．（accessory）

## Component description

＜FX－AT2＞
Attachment for fixed－length fiber：orange
＜FX－AT3＞
Attachment for $\phi 2.2 \mathrm{~mm} \phi 0.087$ in fiber：clear orange

＜FX－AT4＞
Attachment for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber：black

＜FX－AT5＞
Attachment for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber：gray


## ＜FX－AT6＞

Attachment for $\phi 1 \mathrm{~mm} / \phi 1.3 \mathrm{~mm} \phi 0.039 \mathrm{in} /$ $\phi 0.051$ in mixed fiber
（for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber：black，
for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber：gray
＜FX－AT10＞
Attachment for $\phi 1 \mathrm{~mm} \phi 0.039$ in fiber：black


This is enclosed by FX－AT4．
＜FX－AT13＞
Attachment for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber：gray


This is enclosed by FX－AT5．

## Mounting

＜FX－AT2＞
（1）Mount the plug part of the fiber cables in FX－AT2，as shown in the figure below．（The resin plug has a groove to hold it in place．）
（2）Connect the fiber cables，in condition（1），to the fiber sensor amplifier．

## ＜FX－AT3＞

（1）Confirm that the fiber lock button of FX－AT3 is in unlock side．
（2）Insert the fiber cables one by one， in condition（1）．
（3）After inserting，press down the fiber lock button．The fiber cables are fixed at the desired position．（In order to Fiber lock button unlock the fiber cables，press the fiber lock button towards unlock direction from the opposite side．）
（4）Insert the fiber cables into the holes for $\phi 2.2 \mathrm{~mm} \phi 0.087$ in fiber cables of the fiber cutter（FX－CT2） from the direction shown in the
 figure right．
（5）Cut both fiber cables simultaneously．（At this time，place the attachment without any gap against the fiber cutter． The fiber cables will be cut at a position approx． 10.5 mm 0.413 in from the tip of the fiber cable．）
（6）After cutting，connect the fiber cables to the fiber sensor amplifier immediately．

## ＜FX－AT4，FX－AT5，FX－AT6＞

（1）Mount the holders on the gland lightly．
Notes：1）If both long holders and short holders are enclosed with the fiber，use the short holders．
2）In case of FX－AT6，match the colors of the holders and the gland．The black color is for $\phi 1.0 \mathrm{~mm} \phi 0.039$ in fiber cable and the gray color is for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber cable．
（2）Insert the fiber cables into the holders，in condition（1）．
（3）Tighten the holders to fix the fiber cables at the desired length．
（4）Insert the fiber cables，in condition（3），into the holes for $\phi 1.0 \mathrm{~mm} \phi 0.039$ in or $\phi 1.3 \mathrm{~mm}$ $\phi 0.051$ in fiber cables of the fiber cutter（FX－CT2）from direction shown in the figure right．
（5）Cut both fiber cables simultaneously． （At this time，insert the attachment to a position at which it stops．The fiber cables will be cut at a position approx． 0.5 mm 0.020 in from the holder．）
（6）After cutting，insert the fiber cables to the fiber sensor amplifier immediately．
＜FX－AT10，FX－AT13＞
（1）Thread the fiber cable through the gland and holder separately， and screw the gland into the holder clockwise．
（2）Insert the fiber cables one by one into the holes for $\phi 1.0 \mathrm{~mm} \phi 0.039$ in or $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber cable of the fiber cutter（FX－CT2） from the direction shown in the figure right．（At this time，insert the attachment to a position at which it

Screw it clockwise
 stops．The fibers will be cut at a position approx． 0.5 mm 0.020 in from the holder．）

## Fiber

## Fiber cutter (FX-CT2)

- To cut the fiber cables, insert them from the direction shown below. (Fiber cable insertion direction)



## How to use fiber cutter (FX-CT2)

(1) Slide part © ${ }^{A}$ of the fiber cutter fully upward till it stops.
(2) Insert the fiber cables, mounted in the attachment, till they stop.
(Take care that there are separate fiber insertion cable) holes for $\phi 2.2 \mathrm{~mm} \phi 0.087$ in and $\phi 1.0 \mathrm{~mm} \phi 0.039$ in or $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber cables.
(3) Slide part ${ }^{A}$ ) of the fiber cutter down to cut the fibers.


Notes: 1) The fiber cables should be cut in one stroke.
2) Once a fiber cable is cut off at a hole, do not use the hole again. If used, it degrades the cut surface quality and the detectability may deteriorate.
3) The blade cannot be replaced. Please purchase an additional fiber cutter, if required.
4) Note that the sensing range may be reduced by up to $20 \%$ depending on the cut condition. Hence, decide the setting distance by taking sufficient margin.

## Seal type slit mask for FT-WA30/A30, FT-WA8/A8

- Two types of slit masks are enclosed. (one type for FT-A30 and FT-WA30) Apply the enclosed slit mask when detecting small objects or as measures not to saturate the emitted light amount for short-range sensing.
However, the sensing range is reduced when the slit mask is mounted.
As the slit mask is seal type, stick it by aligning the projection of the slit mask with the upper portion of the fiber head, as shown in the figure below.


## Slit masks

Mounting
<FT-A8, FT-WA8>


Sensing range when mounting slit mask [with FX-301(P)]
FT-WA30/A30: 2,500 mm 98.425 in (LONG) / 1,000 mm 39.370 in (STD) / 600 mm 23.622 in (FAST) / 200 mm 7.874 in (S-D)
FT-WA8/A8: 400 mm 15.748 in (LONG) / 200 mm 7.874 in (STD) / 140 mm 5.512 in (FAST) / 70 mm 2.756 in (S-D) $(0.5 \times 12 \mathrm{~mm}$ $0.020 \times 0.472$ in slit mask)
FT-WA8/A8: 800 mm 31.496 in (LONG) / 400 mm 15.748 in (STD) / 280 mm 11.024 in (FAST) / 140 mm 5.512 in (S-D) $(1 \times 12 \mathrm{~mm} 0.039 \times 0.472$ in slit mask)

Vacuum type fiber
Configuration


Leakage: $1.33 \times 10^{-10} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{sec}$. [ He$]$ or less

## Mounting

(1) Make two holes on the vacuum tank wall (chamber wall or flange).

Note: The hole diameter must be from $\phi 5.5$ to $\phi 6.0 \mathrm{~mm} \phi 0.217$ to $\phi 0.236$ in.

(2) Mount the FV-BR1 photo-terminal on the vacuum tank wall.
Notes: 1) The attached O-ring must be mounted.
2) The O-ring must be used at the atmospheric side.
3) The tightening torque should be $0.58 \mathrm{~N} \cdot \mathrm{~m}$ or less.

(3) Mount the FT-J6 atmospheric side fibers on the atmospheric side of the FV-BR1 photo-terminals.
Notes: 1) The fixing nuts must be tightened securely. If not, the sensing range may decrease.
2) The tightening torque should be $0.58 \mathrm{~N} \cdot \mathrm{~m}$ or less.

(4) Mount the vacuum type fibers on the vacuum side of the FV-BR1 photo-terminals.
Notes: 1) The fixings rings of the vacuum type fibers must be tightened securely. If not, the sensing range may decrease.
2) The tightening torque should be $0.58 \mathrm{~N} \cdot \mathrm{~m}$ or less.
(5) Fix the fiber head of the vacuum type fiber.

Note: The maximum tightening torque should be as given below.

|  | Tightening torque |
| :---: | :---: |
| M2.6 | $0.29 \mathrm{~N} \cdot \mathrm{~m}$ |
| M4 <br> M6 | $0.58 \mathrm{~N} \cdot \mathrm{~m}$ |



## Fiber

## FT-L8Y/V8Y chemical-resistant type fiber

- Do not use it in the following chemicals:

Dissolved alkali metals (Natrium, Potassium or Lithium), Fluorine gas (F2), CIF3, OF2 (including gaseous state).

- The beam axis mark is indicated on the side-view fiber. Perform the beam alignment with the beam axis marks, on the receiver and the emitter, facing each other.



## Mounting

- Use a commercial Fluorine resin joint to mount the fiber.
- The bending radius of the protective jacket should be R30 mm 1.181 in or more. It will be damaged under the value.
- The bending radius of the bear fiber should be R25 mm R0.984 in or more. The sensing range will be
 shortened under the value.
- Do not subject the fiber under tension.
- Although the chemical-resistant type fiber is rated for use up to $+115{ }^{\circ} \mathrm{C}+239^{\circ} \mathrm{F}$, place 100 mm 3.937 in or more of the fiber in the normal temperature area to protect the amplifier.



## FD-F8Y liquid level sensing fiber

## Mounting

- Use a commercially available fluorine resin joint, etc., to install FD-F8Y.



## Cautions

- Take care that unclear liquid may not be sensed stably.
- Take care that the tube may stretch by maximum $2 \%$ of the total length if it is used at a high temperature.
- Do not scratch the fiber jacket while cutting the fluorine resin tube.


## Fiber

## FD－F4 $\square$ and FD－F9 $\square$ liquid level sensing fiber

## Mounting

－Mount the fiber head on a pipe with the attached tying bands and anti－slip tubes as shown in the figure below． Make sure that the release lever is retracted（position as in the fig．）before mounting．
Fasten two tying bands，as shown，and cut off the excess portions．

－If other tying bands are to be used，the dimension © ${ }^{A}$ shown in the figure below should be 2.5 mm 0.098 in or less．

－In case of mounting using the two mounting holes，use M3 screws，plain washers，and spring washers．
The tightening torque should be $0.5 \mathrm{~N} \cdot \mathrm{~m}$ or less．
（Please arrange the M3 screws，plain washers，and spring washers separately．
－In case of mounting on the pipe with tying bands，the fiber position can be easily adjusted．

## Adjustment

（1）Unlock the release lever（in the direction of the arrow）．


Press the movable center holders forward to loosen the tying bands and adjust the position．

（3）Lock the release lever to its original place．


Notes：1）Whenever the mounting position is changed，adjust the sensitivity again．
2）The lever mechanism must be used only to adjust the position，and not for tightening the tying bands．If tying bands are tightened while the lever is open，and then the lever is locked，the fiber may be damaged．

## Cautions

－Liquid in a pipe which is not transparent cannot be sensed correctly．
－Unclear or viscous liquid may not be sensed．
－Fit the fiber head to the pipe securely，otherwise the operation may be erroneous．
－Take care that no dew condenses on the pipe＇s sensing surface or the pipe＇s inside wall and no bubble attaches on the pipe＇s inside wall，since it can affect the operation．
－Neither the FD－F4 $\square$ or the FD－F9 $\square$ is waterproof or chemical－resistant．Installation should be avoided at any place where it could come in direct contact with water or chemicals．
－Do not apply excessive tensile force to the fiber cable．

## Cautions for FX－MR2 zoom lens usage

－The spot diameter and the sensing range are adjustable by the screw－in depth as follows．


a：Screw－in depth
b：25－a
L：Distance to focal point
$\phi \mathrm{c}$ ：Spot diameter
－After FX－MR2 is set on the fiber head at the desired depth，tighten the attached nut securely．

－To mount FX－MR2 with a set screw， use a M3 set screw（cup point）． The tightening torque should be $0.29 \mathrm{~N} \cdot \mathrm{~m}$ or less．


Caution for FX－MR3，FX－MR6 finest spot lens usage
－Screw FX－MR3，FX－MR6 on the fiber head until the fiber is fully inserted．
The tightening torque should be $0.29 \mathrm{~N} \cdot \mathrm{~m}$ or less．


## Fiber

## Cautions for FX-MR5 side-view zoom lens usage

- The spot diameter and the sensing range are adjustable by the screw-in depth as follows.

- After FX-MR5 is set on the fiber head at the desired depth, tighten the attached nut NT-FX-MR5 securely.

- The tightening torque should be $0.5 \mathrm{~N} \cdot \mathrm{~m}$ or less when tightening FX-MR5 with a screw.


## Fitting protective tube

- The threaded head free-cut fiber can be fitted with a protective tube.


## Fitting

(1) Insert the fiber cable into the protective tube from the sleeve side.
(2) Turn the fiber head to screw it on the inner thread of the sleeve.


## Mounting

- The maximum tightening torque should be as given below.


Note: The fiber cable must be longer than the protective tube by 30 mm 1.181 in or more to connect it to the amplifier. Make sure to measure the length required before cutting.

## Others

- Do not use the fiber at places having intense vibrations, as this can cause malfunction.
- Keep the fiber head surface intact. If it is scratched or spoiled, the detectability will deteriorate.
- Do not expose the fiber cable to any organic solvents. $\binom{$ Excluding chemical- }{ resistant type fiber }

- Do not use the fiber head in places where it may come in direct contact with water. A water drop on the fiber head deteriorates the sensing.
- Ensure that any strong extraneous light is not incident on the receiving face of the fiber head.
- Do not apply excessive tensile force to the fiber cable.
- Take care that the sensor is not directly exposed to fluorescent light from a rapidstarter lamp or a high frequency lighting device, as it may affect the
 sensing performance.
- Since the sensing portion of the wide beam or narrow beam fiber is concave shaped, take care that dust or dirt does not collect on it. In case it does collect, wipe it with a dry soft cloth.

FX-301

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/



MS-DIN-2 Amplifier mounting bracket (Optional)


Material: Cold rolled carbon steel (SPCC)
(Uni-chrome plated)


| Model No. | Length (mm in) |  |
| :--- | ---: | ---: |
| CN-71-C1 | 1,000 | 39.370 |
| CN-71-C2 | 2,000 | 78.740 |
| CN-71-C5 | 5,000 | 196.850 |

## MS-DIN-E End plate (Optional)



[^0]Thru-beam type fibers $\square$
FT-FM10L \& Free-cut With FX-AT3


FT-B8
$\mathscr{F}$ Free-cut
With FX-AT3


FT-FM2
8 Free-cut
With FX-AT3


FT-N8
$\%$ Free-cut


FT-NFM2S
FT-NFM2S4


FT-SFM2L $\lll$ Free-cut
With FX-AT3


FT-NB8
$\underset{\&}{\infty}$ Free-cut


FT-FM2S
FT-FM2S4


## FT-SFM2

\& Free-cut
With FX-AT3

41
fibe 0.0399
fibere $\times 1$ fiber core $\times 1$


FT-NFM2
8 Free-cut
With FX-AT4


FT-SNFM2
\& Free-cut With FX-AT4



DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

FT-WS8L $8<$ Free-cut With FX-AT3





FX-301

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

FT-P40
$\&$ Free-cut
With FX-AT4


FT-AFM2E
$\mathcal{X}$ Free-cut
With FX-AT3


## FT-KV8

$8 \times$ Free-cut
With FX-AT3


## FT-E12

With FX-AT2


## FT-P2

With FX-AT2


## FT-AFM2

$\$$ Free-cut
With FX-AT3


## FT-E22

With FX-AT2


DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/


## FT-P81X

With FX-AT2


Details of sensing part

$\phi 0.265 \phi 0.010$ fiber core $\times 16$

FT-H2OW-M1
FT-H20W-M2

With FX-AT2


FT-H13-FM2
$8 \times$ Free-cut
With FX-AT3


FT-L8Y
$\$$ Free-cut
With FX-AT3

FT-6V


FT-H35-M2


FT-H20-M1

## FT-60V



## FT-Z802Y




FX-301

DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

Reflective type fibers


## FD-S80

PX Free-cut
With FX-AT5
Details of
$\begin{aligned} & \text { Details of } \\ & \text { sensing part } \\ & \phi 1 \phi 0.039 \text { fiber } \\ & \text { core } \times 2\end{aligned}$



With FX-AT4


## FD-SNFM2 <br> 8 <br> Free-cut <br> 



DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

Reflective type fibers




DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

Reflective type fibers





FD-EN500S1


## FD-ENM1S1



FD-EG2
With FX-AT2


Details of sensing part
Beam-receiving part:
$\phi 0.175 \phi 0.007$ core $\times 6$
(2)

- Beam-emitting part: $\phi 0.175 \phi 0.007$ fiber core $\times 1$

FD-EG3
With FX-AT2


Details of sensing part
Beam-receiving part:
$\phi 0.125 \phi 0.005$ fiber core $\times 6$
(a) Beam-emitting part:
$\phi 0.125 \phi 0.005$ fiber core $\times 1$


## FX-301

DIMENSIONS (Unit: $\mathbf{m m} \mathbf{i n}$ ) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

## Reflective type fibers <br> 

FD-L41
8 Free-cut
With FX-AT4


FD-L4
\& Free-cut
With FX-AT4


## FD-F8Y

8 Free-cut
With FX-AT3


Beam-emitting part: $\phi 0.25 \phi 0.010$ fiber core $\times 9$ Beam-receiving part: $\phi 0.25 \quad \phi 0.010$ fiber core $\times 9$

## FD-L42

\& Free-cut
With FX-AT4




Details of sensing part



## FD-H20-M1



## FD-H20-21



FD-H35-20S


FD-6V


## FD-H35-M2S6


FD-H30-L32


FD-H18-L31 $\mathbb{x}$ Free-cut
With FX-AT3


FX-LE1 Expansion lens (Optional)


Material: Enclosure ......Brass (Nickel plated)
Lens ..............Glass

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/


FV-LE1 Expansion lens (For vacuum type fiber • Optional)


Material: Enclosure ......Aluminum alloy (A6061-T6)
Lens ..............BK-7
FT-J6 Fiber at atmospheric side (For vacuum type fiber • Optional)


FX-MR2 Zoom lens (Optional)


Material: Enclosure ......Aluminum (Black ALMITE) Lens. ..Glass

## FX-MR5

Zoom lens (Optional)


Material: Enclosure ......PBT (Black)
Lens ................Glass


NT-FX-MR5 (exclusive nut) is attached.


## FX-MR3 Finest spot lens (Optional)

Mounting drawing with FD-EG1


Notes: 1) In order to obtain a $\phi 0.3 \mathrm{~mm} \phi 0.012 \mathrm{in}$ spot, it is necessary for ' $\ell$ ', in the above figure, to be 28.5 mm 1.122 in .
2) When inserting the fiber, insert it fully till it stops.

## FX-MR6

Finest spot lens (Optional)
Mounting drawing with FD-EG3


Material: Enclosure ......Aluminum (Black ALMITE)
Lens ...............Acrylic
Notes: 1) In order to obtain a $\phi 0.1 \mathrm{~mm} \phi 0.004$ in spot, it is necessary for ' $\ell$ ', in the above figure, to be 29.5 mm 1.161 in .
2) When inserting the fiber, insert it fully till it stops.

DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX fiber sensor website: http://www.fiber-sensor.com/

MS-EX-3 Mounting bracket for FX-MR2 (Accessory for FX-MR2)

$2-\phi 3.5 \phi 0.138$ mounting holes 0.335 Anti-slip rubber sheet $(8 \times 9.5 \times 1)$


FB-1
Fiber bender (Optional)


## FX-CT2

Fiber cutter (Accessory for free-cut type fiber)


## FX-AT3

 Attachment for $\phi 2.2 \mathrm{~mm} \phi 0.087$ in fiber (Accessory)

## FX-AT5

Attachment for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber (Accessory for $\phi 1.3 \mathrm{~mm} \phi 0.051$ in fiber)



FX-AT2 Attachment for fixed-length fiber (Accessory for fixed-length fiber)



Ground.........POM
FX-AT6 Attachment for $\phi 1 \mathrm{~mm} / \phi 1.3 \mathrm{~mm} \phi 0.039$ in $/ \phi 0.051$ in mixed fiber (Accessory for $\phi 1 \mathrm{~mm} / \phi 1.3 \mathrm{~mm} \phi 0.039$ in $/ \phi 0.051$ in fiber)



[^0]:    Material: Polycarbonate

