SF4－AH SERIES

Small Light Curtain type 4

Compliant with international safety standards

The SF4－AH series has surpassed the most stringent international safety levels and is compliant with the machinery directive and OSHA／ANSI standards． This series has been certified for usage in any workplace around the world．

$$
\begin{array}{l|l}
\text { Europe } & \begin{array}{l}
\text { CE marking based on Machine } \\
\text { Directive and EMC Directive has } \\
\text { been obtained, so that the sensors }
\end{array} \\
\text { can be used in Control Category 4 equipment. } \\
{\left[\begin{array}{ll}
\text { Type } 4 \text { based on IEC } 61496-1 / 2, \text { EN } 61496-1 \\
\text { and Control Category } 4 \text { based on EN } 954-1
\end{array}\right]} \\
\begin{array}{l|l}
\text { North } & \text { C-UL US listings (UL } 61496-1 / 2 \text {) which } \\
\text { America } & \text { are required for use in the United States } \\
\text { and Canada have been obtained. }
\end{array} \\
\text { The SF4-AH series is also compatible with } \\
\text { mechanical equipment that conforms to the } \\
\text { following regulations and standards: OSHA } \\
\text { (1910.212/217), ANSI (B11.1 to B11.20) and } \\
\text { ANSI / RIA 15.06. }
\end{array}
$$

Industry＇s smallest size＾

The Type 4 achieves the smallest size in the industry，thus contributing to facility miniaturization．

＊Data valid as of June， 2002 and based on research conducted by SUNX．

The highest standards of satety have now been achieved
It uses two independent CPUs，which mutually check the safety conditions． High reliability safety design is realized by incorporating dual circuits for signal processing and output．
Further，in order to ensure safety， FMEA（Ḟailure Mode \＆Ėffect Ȧnalysis） has been used to prove safe operation．

Reduced requirements for sadety distance calculations

As a high－speed 11 ms response has been achieved，regardless of the number of beam channels，the calculation of safety distances for each individual sensor is no longer necessary．This high－speed response simplifies the entire process of safety distance calculation．
Increasing the safety distance response speed allows the safe distance between the danger areas and the light curtain to be reduced， thus allowing for miniaturization of the equipment．

Unaligned beam axes can be seen at a glance

The beam-axis alignment indicators are distributed on the sensors in four sections. As the indicators of the sections whose beams are aligned light up in red, the user can easily verify which beam axes have become aligned. Once all beams have become aligned, the indicators light up in green. Upon beginning alignment, as soon as the bottommost or the topmost beam axis (the standard beam axis) becomes aligned, the corresponding bottommost or topmost alignment indicator light begins blinking red. Therefore, beam axes can be easily aligned by performing the initial beam axis alignment on either the bottommost or the topmost beam axis, then rotating the light curtain around the axis of this beam. The beam-axis alignment indicators are provided on both the emitter and the receiver, so that you can see at a glance which beams are not aligned.

(Beam axes of the two upper blocks are not correctly aligned)

All indicators light off

The bottommost indicator blinks red

The botiom two indicators light up in red
All indicators light up in green

Recognizes extraneous light and prevents malfunctions

This function allows the sensor to recognize and reject interference from instantaneous extraneous light emitted from peripheral equipment, thus preventing malfunctions caused by a variety of sources, including:other sensor beams in the vicinity of the operating sensor, beam spatter, AGV and rotating light sources. By reducing the number of malfunctions caused by extraneous light, detection operations will be interrupted less frequently, resulting in substantial improvements in work efficiency.

Mutual interference is reduced without the need for interference prevention lines
The ELCA (Ėxtraneous Light Ċheck \& Àvoid) function enhances the mutual interference prevention function.
ELCA decreases interference from extraneous light having a similar frequency as the light used by the SF4-AH series, thereby also minimizing mutual interference among nearby SF4-AH series sensor units.

The SFAAH series i s equiped with emititing light amount control function which minimizes interference with peripheal sensous

Reducing the amount of light emitted from the emitter minimizes the effects of such emitted light on peripheral equipment.
(This function can be selected by) using the Handy-controller.

Alignment of beam axes can be accurately performed prior to power-up
By using the SF-LAT-2N laser alignment tool, you can quickly and easily align beam axes. The laser beam spot is easy to see, even when light curtain units are installed far apart. In addition, as the SF-LAT-2N laser alignment tool is battery-operated, beam axes can be aligned before powering up the light curtain itself.

Mounting bracket enables easy beam-axis alignment
The beam-axis alignment is easy since angle adjustment is possible with the enclosed rear mounting bracket (MS-SF2N-1). Alternatively, the side mounting bracket (MS-SF2N-3) is also available as an option.

Reductions in total costs are possible by using series connections

Using the optional serial connection cable, a maximum of 3 sets (a total of 192 beam channels) of sensors can be connected in series. Previously, separate wiring was required for 3 sets of sensors. But now, wiring equivalent to that of only one set is required, thus saving troublesome wiring and costs. Moreover, fewer power connections are required, thus only one safety relay unit is needed, reducing costs even further.

Up to 3 sets (a total of 192 beam channels) can be connected in series

Front protection cover protects the sensing surface
In the event that the SF4-AH series is installed in a harsh environment, the use of the front protection cover (FC-SF4A-H \square, optional) will protect the sensing surface from damage.

Spatter protection for the sensing surface (for PNP output type)

The spatter protection hood type, now available, protects the sensing surface from welding machine spatter. Moreover, a front protection cover that can be installed within the sensor casing is also available, completely preventing spatter from adhering to the sensing surface.
In addition, even though sensed objects may contact the sensor, the sensing surface will be protected. The ELCA function implements all possible measures to prevent malfunctions caused by spatter.

Our SF-HC handy controller enables each setting to be performed by hand

Our product lineup now includes a Handy-controller that enables the user to select a variety of settings.
Function settings can be easily performed by anyone.

- Any valid beam channels can be selected! The SF4-AH series now incorporates a fixed blanking function.
The SF4-AH series is equipped with a fixed blanking function that allows specific beam channels to be selectively blocked, without causing the control output (OSSD) to output the OFF signal. This function is convenient for use with applications in which certain fixed obstacles always block specific beam channels.
Furthermore, this function provides greater safety, as the control output (OSSD) will automatically output the OFF signal if the fixed obstacles are subsequently removed from the sensing area.

- Each function can be directly preset using numeric input! Code selection function
Each function can be selected directly by using only a 4 -digit code (numeral) in accordance with the code table.

- Automatic blanking of beam channels! The SF4-AH series now incorporates a floating blanking function.
1, 2 or 3 non-specified beam channels can be deactivated. If the number of beam channels that are blocked is less than or equal to the number of preset beam channels, then the control output (OSSD) will not output the OFF signal. This function is useful when the positions of obstacles within the sensing area must be changed during workpiece re-arrangement, or when material must be thrown through the light curtain's sensing area.

-Minimum size of objects detected

When 1 beam channel has been preset: $\phi 50 \mathrm{~mm} \phi 1.969$ in When 2 beam channels have been preset: $\phi 70 \mathrm{~mm} \phi 2.756$ in When 3 beam channels have been preset: $\phi 90 \mathrm{~mm} \phi 3.543$ in

- Auxiliary output has selectable output configuration
The output configuration of the auxiliary output can be changed.
The output is selectable from among the following configurations: same action as control output; reverse action of control output; ON when light is not being emitted (at time of lockout); and OFF when light is not being emitted (at time of lockout).

Code	4th digit	3rd digit	2nd digit	1st digit
	Fixed blanking	Floating blanking	Control for amount of emitting light	Auxiliary output
17	Invalid	Invalid	Invalid	Reverse action of control output
;	Valid / auto setting	Number of beam channel preset $=1$ Invalid seting tor both beam channel ends = invalid	Valid	Same action as control output
0^{7}	-	Number of beam channel preset $=2$ Invalid setting tor both beam channel ends $=$ invalid	-	When light is not being emitted (at time of lockout): ON
7	-	Number of beam channel preset $=3$ Invalid setting for both beam channel ends $=$ invalid	-	When light is not being emitted (at time of lockout): OFF
$!$	-	Number of beam channel preset $=1$ Invalid seting for both beam channel ends = valid	-	-
0.	-	Number of beam channel preset $=2$ Invalid setting for both beam channel ends = valid	-	-
7	-	Number of beam channel preset $=3$ Invalid seting tor both beam channel ends $=$ valid	-	-

- A variety of other functions can be selected

Control for amount of emitting light

This function reduces the amount of emitting light. It is useful when the effects from emitted light on other equipment must be minimized. (operating range 5 m 16.404 ft)

Monitoring function of settings details

This function allows the user to confirm the details of each sensor setting.

Protection function

This function locks the sensor using a four-digit password. This function will not allow changes to sensor function settings unless the password is input, thus preventing third parties from accidentally changing the settings.

Copy function

Allows settings to be copied to other sensors. If the same setting must be input several times into different sensors, this function will reduce the time required for the inputting settings.

The SF-AC safety relay unit especially made for the PNP output type light curtain is available
The SF-AC, an exclusive safety relay unit for the PNP output type light curtain, is also available. Safety will be enhanced even further.

- A connecting terminal blocks are not needed

As SF-AC incorporates a power supply terminals and synchronization lines terminals for the light curtain, so terminal blocks are not required.

- Incorporates a 2-channel auxiliary output

SF-AC incorporates both an auxiliary output that operates together with the light curtain's control output (OSSD), and an alarm output that functions together with the light curtain's auxiliary output (non-safety output). These features allow for monitoring of light curtain activity.

- Unexpected start due to start-switch welding prevented

The unit is equipped with a trailing edge switching function, which causes an ON signal to be sent when the start-switch signal is falling. This prevents unexpected starting which can occur if the start switch gets welded.

Normal switching

Trailing edge switching

- Corresponds to up to Control Category 4

Can correspond to Control Category 4 through a combination with the SF4-AH series / SF2-EH series as well as to Control Category 2 through a combination with the SF2-A series / SF2-N series.

- Installation time and labor can be saved due to the usage of detachable terminal blocks
As wiring can be performed with the terminal blocks removed, it is not necessary to detach the controller from the control panel when performing maintenance, thus reducing the number of installation procedures required. Also, when replacing the relay units, you simply insert new terminals without having to manipulate the wiring.

- Maintenance free

Equipped with a hybrid fuse that enables recovery with only the reintroduction of the power supply making fuse replacement unnecessary.

- 10 ms high-speed response

We have realized the highest-class response time, 10 ms , for the relay output making for even more enhanced safety.

- A contact point mechanical lifetime of $\mathbf{1 0}$ million operations

Longer usage is possible due to the long contact point lifetime.

Sensors Mating cable is not supplied with the sensor. Please order it separately.

Type	Appearance	Operating range (Note 1)	Model No.		Number of beam channels	Protective height (mm in)(Note 2)	
			NPN output	PNP output			
			SF4-AH8-N	SF4-AH8	8	190	7.480
			SF4-AH12-N	SF4-AH12	12	270	10.630
			SF4-AH16-N	SF4-AH16	16	350	13.780
			SF4-AH20-N	SF4-AH20	20	430	16.929
			SF4-AH24-N	SF4-AH24	24	510	20.079
			SF4-AH28-N	SF4-AH28	28	590	23.228
			SF4-AH32-N	SF4-AH32	32	670	26.378
			SF4-AH36-N	SF4-AH36	36	750	29.528
			SF4-AH40-N	SF4-AH40	40	830	32.677
			SF4-AH48-N	SF4-AH48	48	990	38.976
			SF4-AH56-N	SF4-AH56	56	1,150	45.276
			SF4-AH64-N	SF4-AH64	64	1,310	51.575
			SF4-AH72-N	SF4-AH72	72	1,470	57.874
			SF4-AH80-N	SF4-AH80	80	1,630	64.173
			SF4-AH88-N	SF4-AH88	88	1,790	70.472
			SF4-AH96-N	SF4-AH96	96	1,950	76.772
		$\begin{aligned} & 0.3 \text { to } 7 \mathrm{~m} \\ & 0.984 \text { to } 22.966 \mathrm{ft} \end{aligned}$	-	SF4-AH8-H	8	190	7.480
			-	SF4-AH12-H	12	270	10.630
				SF4-AH16-H	16	350	13.780
				SF4-AH20-H	20	430	16.929
			-	SF4-AH24-H	24	510	20.079
			-	SF4-AH28-H	28	590	23.228
			-	SF4-AH32-H	32	670	36.378
			-	SF4-AH36-H	36	750	29.528
			-	SF4-AH40-H	40	830	32.677
			-	SF4-AH48-H	48	990	38.976
			-	SF4-AH56-H	56	1,150	45.276
			-	SF4-AH64-H	64	1,310	51.575
			-	SF4-AH72-H	72	1,470	57.874
			-	SF4-AH80-H	80	1,630	64.173
			-	SF4-AH88-H	88	1,790	70.472
			-	SF4-AH96-H	96	1,950	76.772

Notes: 1) The operating range is the possible setting distance between the emitter and the receiver. The sensor can detect less than 0.3 m 0.984 ft away.
2) Refer to 'TECHNICAL GUIDE' on $p .1133$ for the definition of the protective height.

Safety relay unit

Designation	Appearance	Model No.	Description
Safety relay unit $\left.\begin{array}{l}\text { For PNP output } \\ \text { type light curtain }\end{array}\right)$	SF-AC	Safety relay unit for PNP output type Complies with Control Categories up to 4 based on EN 954-1	

ORDER GUIDE

Handy-controller

Designation	Appearance	Model No.
		SF-HC
Handy- controller		

Designation	Appearance	Model No.	Description	
Cable with connector on one end		SF4A-CC3	Length: 3 m 9.843 ft Weight: 380 g approx. (two cables)	These cables are used for wiring. 6 -core shielded cable with connector on one end, two cables per set Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 14 \mathrm{~mm} \phi 0.551$ in max. Cable color: Gray (for emitter) Gray with black line (for receiver) Connector color: Gray (for emitter) Black (for receiver)
		SF4A-CC7	Length: 7 m 22.966 ft Weight: 800 g approx. (two cables)	
		SF4A-CC10	Length: 10 m 32.808 ft Weight: $1,120 \mathrm{~g}$ approx. (two cables)	
Cable with connector on both ends		SF4A-CCJ10	Length: 10 m 32.808 ft Weight: $1,160 \mathrm{~g}$ approx. (two cables)	This cable is used for cable extension. Shielded cable with connector on both ends, two cables per set Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\boldsymbol{\phi} 14 \mathrm{~mm} \phi 0.551$ in max. Cable color: Gray (for emitter) Gray with black line (for receiver) Connector color: Gray (for emitter), Black (for receiver)
Cable for series connection (Note)		SF4A-CSL02	Length: 200 mm 7.874 in Weight: 70 g approx. (two cables)	Used to connect sensors in series Shielded cable with connector on both ends, two cables per set (common for emitter and receiver) Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Cable color: Gray (common for emitter and receiver)
		SF4A-CSL05	Length: 500 mm 19.685 in Weight: 100 g approx. (two cables)	
		SF4A-CSL10	Length: 1 m 3.281 ft Weight: 160 g approx. (two cables)	
		SF4A-CSL30	Length: 3 m 9.843 ft Weight: 380 g approx. (two cables)	

Note: Note that the dimensions of the SF4-AH series will change when using the cable for series connection (SF4A-CSL \square). Refer to 'DIMENSIONS' on p. 438.

Spare parts (Accessories for sensor)

Designation	Model No.	Description	
Rear mounting bracket	MS-SF2N-1	Used to mount the sensor on the rear surface (1 set for emitter and receiver)	
U-shaped rear mounting intermediate supporting bracket (Note)	MS-SF2N-2	For SF4-AHI--N)	Used to hold the sensor at the intermediate position for protection against vibration (for rear surface
L-shaped intermediate supporting bracket (Note)	MS-SF4A-H2	For SF4-AHI-H	mounting) (1 set for emitter and receiver)

Note: The number of sets required varies depending on the product. Refer to 'DIMENSIONS' on p. 441 and p. 442 for further details.

Rear mounting
bracket

Four bracket se
Eight M3 (length 5 mm 0.197 in) hexagon-socket-head bolts are attached.

U-shaped rear mounting intermediate supporting bracket L -shaped intermediate supporting bracket - MS-SF2N-2

- MS-SF4A-H2 - MS-SF2N-L

Note: The above figure is only applicable to the MS-SF2N-2. The MS-SF4A-H2 has a different shape

- MS-SF2N-2 / MS-SF4A-H2

Set of 2 pcs. each of U-shaped rear supporting bracket and retaining plate

MS-SF2N-L

Two L-shaped bracket set
〔Two M3 (length 10 mm 0.394 in) pan head screws, two M4 (length 10 mm 0.394 in) hexagon-socket-head bolts and two nuts are attached

OPTIONS

Note: The model Nos. given above denote a single unit, not a pair of units. 2 pcs. (2 sets) are required to mount the emitter / receiver.

Slit mask

The slit mask restrains the amount of beam emitted or received and hence reduces the interference between neighboring sensors. It is also used in cases when the beam intensity is too strong penetrating through the sensing object.
However, the operating range reduces when the slit mask is used.

Operating range

In case of mounting

OS-SF4A-H \square

- Slit on the emitter side:

4 m 13.123 ft

- Slit on the receiver side:

3 m 9.843 ft

- Slit on both sides: 2 m 6.562 ft

n case of mounting

OS-SF4A-H \square-H

- Slit on the emitter side:

3 m 9.843 ft

- Slit on the receiver side:

3 m 9.843 ft

- Slit on both sides: 1.5 m 4.921 ft

Front protection unit
 - MC-SF4AH- \square

It protects sensing surface from damage due to striking of an
object.

M3 (length 6 mm 0.236 in)
hexagon-socket-head bolts

- Parts List	Designation	Model No.	Number
Remarks			
Protection bar	-	1 pc.	Material: Aluminum
Protection bar mounting bracket	-	2 pcs.	Material: Cold rolled carbon steel (SPCC)
Protection bar intermediate supporting bracket	-	1 pc. (Note 1)	Material: Cold rolled carbon steel (SPCCC)
L-shaped rear mounting intermediate supporting bracket	MS-SF4A-L2	0 to 5 pcs. (Note 2)	Material: Cold rolled carbon steel (SPCC)
L-shaped side mounting intermediate supporting bracket	MS-SF4A-L4	0 to 5 pcs. (Note 2)	Material: Cold rolled carbon steel (SPCC)
Spacer	-	2 pcs.	Material: Aluminum

Notes: 1) The protection bar intermediate supporting bracket is attached with the front protection unit for 40 beam channels or more.
2) The number of accessories varies depending on the product. Refer to 'DIMENSIONS' on p. 444 for further details.

Designation	Model No.	Description
		With the large display unit put on the light curtain, the operation is easily observable from various directions. Specifications

Notes: 1) The number of sets required varies depending on the product. Refer to 'DIMENSIONS' on p. 443 for further details.
2) Multiple beam channel sensors requiring the intermediate supporting bracket (36 beam channels or more) cannot be mounted on an aluminum frame with the center sensor mounting bracket.

Large display unit for light curtain

 -SF-IND-2

Attaches to upper edge of light curtain.
Tighten together the mounting bracket provided with the area sensor and the mounting bracket of SF-IND-2

Laser alignment tool - SF-LAT-2N

Side mounting bracket - MS-SF2N-3

U-shaped side mounting intermediate supporting bracket - MS-SF2N-4 - MS-SF4A-H4

Note: The above figure is only applicable to the MS-SF2N-4. The MS-SF4A-H4 has a different shape.

- MS-SF2N-4 / MS-SF4A-H4

Set of 2 pcs. each of U-shaped side supporting bracket and retaining plate

- MS-SF2N-L (Accessory for sensor) - MS-SF2N-L (Accessory for se [Two M3 (length 10 mm 0.394 in) pan head screws, two M4 (length 10 mm head bolts and two nuts head bolts and two nuts
are attached.

SPECIFICATIONS

Individual specifications

	o. NPN output	SF4-AH8-N	SF4-AH12-N	SF4-AH16-N	SF4-AH2O-N	SF4-AH24-N	SF4-AH28-N	SF4-AH32-N	SF4-AH36-N
m	PNP output	SF4-AH8(-H)	SF4-AH12(-H)	SF4-AH16(-H)	SF4-AH20(-H)	SF4-AH24(-H)	SF4-AH28(-H)	SF4-AH32(-H)	SF4-AH36(-H)
No. of beam chan	nnels	8	12	16	20	24	28	32	36
Beam pitch					20 n	0.787 in			
Protective height		m 7.480	270 mm 10.630 in	350 mm 13.780 in	430 mm 16.929 in	510 mm 20.079	590 mm 23.228 in	670 mm 26.378 in	750 mm 2
Current consump		Emitter	: 55 mA or less,	Receiver: 80 mA	or less	Emitter:	75 mA or less, R	Receiver: 90 mA	or less,
Weight	SF4-AH \square (-N)	390 g approx.	490 g approx.	600 g approx.	710 g approx.	810 g approx.	880 g approx.	950 g approx.	1,000 g approx.
dreceiv	SF4-AH \square - H	490 g approx.	640 g appro	800 g appro	950 g approx.	1,100 g approx.	1,200 g approx.	1,400 g approx.	$1,500 \mathrm{~g}$ approx.
Model	NPN output	SF4-AH40	SF4-AH48	SF4-AH56-	SF4-AH64-	SF4-AH72-	F4-AH80-N	F4-AH88-N	SF4-AH96-N
Item	PNP output	SF4-AH40(-H)	SF4-AH48(-H)	SF4-AH56(-H)	SF4-AH64(-H)	SF4-AH72(-	SF4-AH80(-H)	SF4-AH88(-H)	SF4-AH96(-H)
No. of beam chan	nnels	40	48	56	64	72	80	88	96
Beam pitch					20	0.787 in			
Protective height		830 mm 32.677 in	990 mm 38.976 in	$1,150 \mathrm{~mm} 45.276 \mathrm{in}$	$1,310 \mathrm{~mm} 51.575$ in	$1,470 \mathrm{~mm} 57.874$ in	1,630 mm 64.173	1,790 mm 70.472	1,950 mm 76.77
Current consump		Emiter:90 mA or ress, F	Receiver: 100 mA or	Eniter: $110 \mathrm{~mA} \mathrm{orless}$,	Receiver:115 mA orless	Eniter: 130 mA orless,	Receiver: 15 mA or less	Eniter: 150 mA orless,	Receiver: 135 mA orless
Weight	SF4-AH \square (-N)	1,100 g approx.	1,400 g approx.	1,700 g approx.	$1,900 \mathrm{~g}$ approx.	2,100 g approx.	2,300 g approx.	$2,500 \mathrm{~g}$ approx.	2,700 g approx.
and receiver	SF4-AH \square -	$1,600 \mathrm{~g}$ approx.	$1,800 \mathrm{~g}$ approx	$2,000 \mathrm{~g}$ approx.	$2,600 \mathrm{~g}$ appro	2,900 g approx.	$3,100 \mathrm{~g}$ appro	$3,300 \mathrm{~g}$ appr	$3,900 \mathrm{~g}$ app

Common specifications

Model No.

Response time
Series
connection

Auxiliary output
(Non-safety output)

Operation mode
Protection circuit

Emitter
Indicators
Receiver

Interference prevention function Test input (emission halt) function
Test input (emission halt input)
Degree of protection
Ambient temperature / Ambient humidity Ambient illuminance Dielectic strength woltage / Insulation ressistance Vibration resistance / Shock resistance
Emitting element
Material
Cable
Cable extension

Accessories

NPN output \quad PNP output

SF4-AH \square-N
SF4-AH $\square(-H)$
EN 954-1 (Category 4), EN 61496-1 (Type 4), IEC 61496-1/2 (Type 4), UL 61496-1/2 (Type 4), UL 1998
0.3 to 7 m 0.984 to 22.966 ft
$\phi 30 \mathrm{~mm} \phi 1.181$ in opaque object (Note 1)
$\pm 2.5^{\circ}$ or less [for an operating range exceeding 3 m 9.843 ft (conforming to IEC 61496-2 / UL 61496-2)] 24 V DC $\pm 10 \%$ Ripple P-P 10% or less
Semiconductor output (NPN output equivalent) 2 outputs

- Maximum sink current: 200 mA
- Applied voltage: Same as supply voltage (between control output and OV)
- Residual voltage: 2 V or less (at 200 mA sink current)

Semiconductor output (PNP output equivalent) 2 outputs

- Maximum source current: 200 mA
- Applied voltage: Same as supply voltage (between control output and +V)
- Residual voltage: 2.5 V or less (at 200 mA source current)

ON when all beam channels are received, OFF when one or more beam channels are interrupted (OFF also in case of any malfunction in the sensor or the synchronization signal) Incorporated
In normal operation: OFF response 11 ms or less, ON response 70 ms or less
In the blanking function set condition: OFF response 15 ms or less, ON response 70 ms or less (Note 2)
In normal operation: OFF response 20 ms or less, ON response 70 ms or less
In the blanking function set condition: OFF response 20 ms or less, ON response 70 ms or less (Note 2)

NPN open-collector transistor

- Maximum sink current: 60 mA
- Applied voltage: Same as supply voltage (between auxiliary output and O V)
- Residual voltage: 2 V or less (at 60 mA sink current)

PNP open-collector transistor

- Maximum source current: 60 mA
- Applied voltage: Same as supply voltage (between auxiliary output and +V)
- Residual voltage: 2.5 V or less (at 60 mA source current)

OFF when control outputs are ON, ON when control outputs are OFF Incorporated
Beam-axis alignment indicators: 2-color (Red / Green) LED X4 (lights up in red when each beam channel receives light, blinks in red when the topmost or bottommost beam channel receives light, lights up in green when all beam channels receive light), Operation indicator (Note 3): 2-color (Red / Green) LED (Note 3) (lights up in red when control outputs are OFF, lights up in green when control outputs are ON), Emission halt / Emission amount control indicator: Orange LED (emission in normal mode: lights off, emission in short mode: lights up, blinks when emission halts), Fault indicator: Yellow LED (lights up or blinks if a fault occurs in the sensor)
Beam-axis alignment indicators: 2-color (Red / Green) LED $\times 4$ (lights up in red when each beam channel receives light, blinks in red when the topmost or bottommost beam channel receives light, lights up in green when all beam channels receive light), OSSD indicator: 2-color (Red / Green) LED (lights up in red when control outputs are OFF, lights up in green when control outputs are ON), Blanking indicator: Orange LED (Note 3) (lights up when blanking function is used, blinks when connecting Handy-controller), Fault indicator: Yellow LED (lights up or blinks if a fault occurs in the sensor)

Incorporated (In cace of series connection: 3 sets max., Max. beam channels 192 beam channels)
Incorporated
Emission: 0 to +1.5 V (sink current: 2 mA or less) Emission halt: Open, or +9 V to Vs (Note 4)

Emission: +9 V to Vs (sink current: 2 mA or less)(Note 4) Emission halt: Open, or 0 to +1.5 V
IP65 (IEC)
-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (No dew condensation or icing allowed), Storage: -25 to $+70^{\circ} \mathrm{C}-13$ to $+158^{\circ} \mathrm{F} / 30$ to $85 \% \mathrm{RH}$, Storage: 30 to 95% RH Sunlight: 20,000 ℓx at the light-receiving face, Incandescent light: $3,500 \ell x$ at the light-receiving face
$1,000 \mathrm{VAC}$ for one min. between all supply terminals connected together and enclosure (Note 5)/ $20 \mathrm{M} \Omega$, or more, with 500 V DC megger between all supply terminals connected together and enclosure (Note 5) 10 to 55 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each $/ 300 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (30 G approx.) in X, Y and Z directions for three times each Infrared LED (Peak emission wavelength: 870 nm 0.034 mil)
Enclosure: Aluminium, Front case: Polycarbonate, Lens: Polycarbonate, Cap: Polycarbonate and ABS
6-core ($0.3 \mathrm{~mm}^{2} \times 4$-core, $0.2 \mathrm{~mm}^{2} \times 2$-core) oil resistant shielded cable, 0.5 m 1.640 ft long, with a connector at the end Extension up to total 20.5 m 67.257 ft is possible, for both emitter and receiver, with optional mating cables.

[^0] bracket, MS-SF4A-H2 for '-H' type): (Note 6), MS-SF2N-L (L-shaped intermediate supporting bracket): (Note 6), SF4-AH-TR (Test rod): 1 pc.

Notes: 1) In this device, the floating blanking function can be set by using the Handy-controller (SF-HC)(optional). When the floating blanking function is used, the size of the min. sensing object is changed. For details on the floating blanking function, refer to p. 423 .
) Refer to p. 423 for detail on the emission amount control function and the blanking function
3) Since the color of the operation indicator changes according to the ON / OFF state of the control outputs (OSSD1, OSSD2), the operation indicator is marked as 'OSSD' on the sensor 4) Vs is the same value as the voltage of the used power supply to be used.

Surge absorber is connected between the main body enclosure and the supply terminals to avoid faulty operation due to surge. For this reason, the values for dielectric strength MS SFN
6) MS-SF2N-2 / MS-SF4A-H2 (U-shaped rear mounting intermediate supporting bracket) and MS-SF2N-L (L-shaped intermediate supporting bracket) are attached with the following sensors. The number of attached U-shaped rear mounting intermediate supporting bracket and L-shaped intermediate supporting bracket are different depending on the sensor as follows.
SF4-AH36(-N/H), SF4-AH40(-N/H): 1 set, SF4-AH48(-N/H): 2 sets, SF4-AH56(-N/H), SF4-AH64(-N/H), SF4-AH72(-N/H): 3 sets SF4-AH80(-N/H):4 sets, SF4-AH88(-N/H), SF4-AH96(-N/H):5 sets

SPECIFICATIONS

Safety relay unit for PNP output type light curtain

Item	Model No.	SF-AC
Standards		BG, UL and CSA
Control category		ISO 13849-1 (EN 954-1) compliance up to Category 4 standards
Supply voltage		24 V DC $\pm 10 \%$ Ripple P-P 10% or less
Fuse (power supply)		Hybrid fuse, triggering current: 1.1 A or more, Reset after power down
Power consumption		1.7 W approx. (without light curtain)
Power supply for light curtain		24 V DC $\pm 10 \%$
Enabling path		NO contact $\times 3$
	Switching current (13-14, 23-24, 33-34)	Max. 6 A 30 V DC / 6 A 230 V AC, resistive load
	Fuse	6 A (slow blow)
Auxiliary output		NC contact $\times 1$
	Switching current (41-42)	Max. 1 A 24 V DC
	Fuse	1 A (slow blow)
Alarm output (Note)		NC contact $\times 1$ (Non-safety contact, related to input 'Alarm in')
	Switching current (51-52)	Max. 1 A 24 V DC, Min. 5 mA 24 V DC
	Fuse	1 A (slow blow)
Utilization category		AC-15, DC-13 (EN 60947-5-1)
Pick-up delay		40 ms or less / 50 ms or less (Auto / Manual)
Drop-out delay		10 ms or less
Contact material / contacts		AgSnO, Self cleaning, positively driven
Contact resistance		$100 \mathrm{~m} \Omega$ or less
Mechanical lifetime		10 million times (switching frequency 180 times/min.)
Electrical lifetime		100,000 times (switching frequency 20 times $/ \mathrm{min}$. rated load)
	Power	Green LED (lights up when the power is supplied)
	Internal circuit operation (Ui)	Green LED (lights up when both conditions are present: unit is powered up and hybrid fuse is at normal state)
	Relay operation (K1 / K2)	Green LED $\times 2$ (lights up when enabling contacts are closed)
	Test input (Test)	Yellow LED (lights up when X11-X12 is opened)
Trailing edge function		Incorporated
Test input polarity selection function		Incorporated (Selectable PNP or NPN test input polarity by internal switch
\square	Degree of protection	Enclosure: IP40, Terminal: IP20
	Ambient temperature / Ambient humidity	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$, Storage: -10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F} / 35$ to 85% RH, Storage: 35 to 85% RH
	Vibration resistance	10 to 55 Hz frequency, 0.35 mm 0.014 in amplitude in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for three times each (in power OFF state)
Connection terminal		Removable European terminal
	Tightening torque	$0.6 \mathrm{~N} \cdot \mathrm{~m}$
Weight		460 g approx.
Material		Enclosure: Polycarbonate

Note: The alarm output is 'open' when the alarm input from the light curtain is ON. Refer to each light curtain for details pertaining to each type of alarm.

Handy-controller

Item	SF-HC
Supply voltage	24 V DC ± 10 \% Ripple P-P10 \% or less (common to sensor power supply)
Current consumption	45 mA or less
Communication method	RS-485 two-way communications (Specific procedure)
Digital display	4 -digit red LED $\times 2$ (Selected beam channels, setting contents etc. are displayed.)
Function indicator	Green LED $\times 8$ (set function is displayed.)
Functions	Fixed blanking (shipping setting status: ineffective) / Floating blanking (shipping setting status: ineffective) / Auxiliary output (shipping setting status: Negative Logic of OSSD) / Emitting light amount control (shipping setting status: ineffective) / Code setting / Setting contents monitoring / Protecting (shipping setting status: ineffective) (the preset password at shipping is ' 0000^{\prime} ') / Copy function
Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (No dew condensation or icing allowed), Storage: -25 to $+70{ }^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$
Ambient humidity	30 to 85 \% RH, Storage: 30 to 85 \% RH
Voltage withstandability	$1,000 \mathrm{~V} \mathrm{AC} \mathrm{for} \mathrm{one} \mathrm{min}$.
Insulation resistance	$20 \mathrm{M} \Omega$, or more, with 500 V DC megger between all supply terminals connected together and enclosure
Cable	Shielded cable, 0.5 m 1.640 ft long, with a connector at the end (2 cables)
Weight	190 g approx.

Laser alignment tool

Item	SF-LAT-2N
Supply voltage	3 V (AA size battery $\times 2$ pcs.)
Battery	1.5 V (AA size battery) $\times 2$ pcs. (replaceable)
Battery lifetime	10 hours approx. of continuous operation (Manganese battery, at $+25^{\circ} \mathrm{C}+77{ }^{\circ} \mathrm{F}$ ambient temperature)
Light source	Red semiconductor laser: class 2 (IEC / FDA / JIS)(Max. output: 1 mW , Peak emission wavelength: 650 nm 0.026 mil)
Spot diameter	10 mm 0.394 in approx. (at $5 \mathrm{~m} 16.404 \mathrm{ft} \mathrm{distance)}$
Ambient temperature	0 to $+40^{\circ} \mathrm{C}+32$ to $+104{ }^{\circ} \mathrm{F}$ (No dew condensation), Storage: 0 to $+55^{\circ} \mathrm{C}+32$ to $+131{ }^{\circ} \mathrm{F}$
Ambient humidity	35 to 85 \% RH, Storage: 35 to 85 \% RH
Material	Enclosure: ABS, Mounting part: Aluminum
Weight	200 g approx. (including batteries)
Accessories	AA size battery: 2 pcs.

NPN output type

I/O circuit diagram
Connector pin No.

Internal circuit $\longleftrightarrow 0$ - Users' circuit

CAUTION

Use a safety relay unit or an equivalent safety control circuit for FSD.
※1
Non-voltage contact or NPN open-collector transistor

Note: Vs is same voltage as the voltage of the power supply to be used.

Wiring diagram

Notes: 1) Unused wires must be insulated to ensure that they do not come into contact with wires already in use.
2) Conductor cross-section area of lead wire of mating cable is $0.2 \mathrm{~mm}^{2}$ (synchronization wire) and $0.3 \mathrm{~mm}^{2}$ (exclude synchronization wire). 3) Be sure to connect the shield wire to the frame ground (F.G.).

I/O CIRCUIT AND WIRING DIAGRAMS

PNP output type

CAUTION
Use a safety relay unit or an equivalent safety control circuit for FSD.

※1

Non-voltage contact or PNP open-collector transistor
or Low (open, or 0 to +1.5 V): Emission halt
High (+9 V to Vs) $\quad:$ Emission (sink current: 2 mA or less) (Note)
Note: Vs is same voltage as the voltage of the power supply to be used.

Wiring diagram

Notes: 1) Unused wires must be insulated to ensure that they do not come into contact with wires already in use.
2) Conductor cross-section area of lead wire of mating cable is $0.2 \mathrm{~mm}^{2}$ (synchronization wire) and $0.3 \mathrm{~mm}^{2}$ (exclude synchronization wire).
3) Be sure to connect the shield wire to the frame ground (F.G.).

Part description and function

		Description	Function
	(1)	Beam-axis alignment indicators [RECEPTION] (Red / Green LED)	Top: Blinks in red when the topmost beam channel receives light, lights up in red when sensor top receives light. Upper middle: Lights up in red when sensor upper middle receives light. Lower middle: Lights up in red when sensor lower middle receives light. Bottom: Blinks in red when the bottommost beam channel receives light, lights up in red when sensor bottom receives light. Lights up in green when all beam channels (top, upper middle, lower middle and bottom) receive light.
	(2)	Operation indicator [OSSD] (Note 1) (Red / Green LED)	Lights up in red when the control outputs are OFF, lights up in green when the control outputs are ON.
	(3)	Emission halt / Emission amount control indicator [CTRL] (Orange LED)	Emission in normal mode: Lights off Emission in short mode: Lights on (Note 2) Emission halt: Blinks
	(4)	Fault indicator [FAULT] (Yellow LED)	Lights up or blinks when a fault occurs in the sensor. (Note 3) Lights up: Setting data of the sensor is in error (Noise is present around the sensor) 1 blink: Beam channel No. error (The end cap is not connected correctly.) 2 blinks: Series connection error (The cable for series connection is not connected correctly.) 3 blinks: Total unit No. / total beam channel No. error (When more than 3 seits of sensors are serially connected or when a total of 192 beam channels are exceeded) 6 blinks: Effect from noise / power supply or failure of internal circuit
	(1)	Beam-axis alignment indicators [RECEPTION] (Red / Green LED)	Top: Blinks in red when the topmost beam channel receives light, lights up in red when sensor top receives light. Upper middle: Lights up in red when sensor upper middle receives light. Lower middle: Lights up in red when sensor lower middle receives light. Bottom: Blinks in red when the bottommost beam channel receives light. Lights up in red when sensor bottom receives light. Lights up in green when all beam channels (top, upper middle, lower middle and bottom) receive light.
	(2)	$\begin{aligned} & \text { OSSD indicator } \\ & \text { [OSSD] (Note 1) } \\ & \text { (Red / Green LED) } \end{aligned}$	Lights up in red when the control outputs are OFF, lights up in green when the control outputs are ON.
	(3)	Blanking indicator [BLANK] (Orange LED)	Lights up when the blanking function is used (Note 2), blinks when connecting the Handy-controller.
	(4)	Fault indicator [FAULT] (Yellow LED)	Lights up or blinks when a fault occurs in the sensor. (Note 3) Lights up: Setting data of the sensor is in error (Noise is present around the sensor) 1 blink: Beam channel No. error (The end cap is not connected correctly.) 2 blinks: Series connection error (The cable for series connection is not connected correctly.) 3 blinks: Total unit No. / total beam channel No. error (When more than 3 seits of sensors are serially connected or when a total of 192 beam channels are exceeded) 4 blinks: Received extraneous light error 5 blinks: Control output (OSSD1, OSSD2) error (The control output lines are not connected correctly.) 6 blinks: Effect from noise / power supply or failure of internal circuit

Notes: 1) Since the color of the operation indicator changes according to the ON / OFF state of OSSD, the operation indicator is marked as OSSD on the sensor.
2) Emitting light amount control function and blanking function must both be set using the Handycontroller, SF-HC (optional).
3) The blinking cycle of the fault indicator is illustrated below. The number of blinks indicate what kind of fault has occurred. There is an interval of approx. 2 sec . between blinking.

Blinking cycle of fault indicator

Wiring

 Refer to the applicable regulations for the region where this device is to be used when setting up the device. In addition, make sure that all necessary measures are taken to prevent possible dangerous operating errors resulting from earth faults.

- Make sure that the power supply is off while wiring.
- Verify that the supply voltage variation is within the rating.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this sensor, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Do not run the wires together with high-voltage lines or power lines or put them in the same raceway. This can cause malfunction due to induction.

Others

- Do not use during the initial transient time (2 sec.) after the power supply is switched on.
- Avoid dust, dirt and steam.
- Take care that the sensor does not come in direct contact with water, oil, grease, or organic solvents, such as, thinner, etc.
- Take care that the sensor is not directly exposed to fluorescent light from a rapid-starter lamp or a high frequency lighting device, as it may affect the sensing performance.

- Do not utilize this sensor in 'PSDI Mode', in which the sensor is utilized as an activator for machinery.
- To use this product in the U.S.A., refer to OSHA 1910. 212 and OSHA 1910. 217 for installation, and in Europe, refer to EN 999 as well. Observe your national and local requirements before installing this product.
- This catalog is a guide to select a suitable product. Be sure to read the instruction manual attached to the product prior to its use.
- Make sure to carry out the test run before regular operation.
- This safety system is for use only on machinery in which the dangerous parts can be stopped immediately, either by an emergency stop unit or by disconnecting the power supply. Do not use this system with machinery which cannot be stopped at any point in its operation cycle.

Sensing area

- Make sure to install this product such that any part of the human body that passes through the sensing area is detected before it reaches dangerous machine parts. If the human body is not detected, there is a danger of serious injury or death.
- Do not use any reflective type or retroreflective type arrangement.

Correct mounting method

Wrong mounting method

Safety distance

- Calculate the safety distance correctly, and always maintain a distance which is equal to or greater than the safety distance, between the sensing area of this
 sensor and the dangerous parts of the machinery.
If the safety distance is miscalculated or if sufficient distance is not maintained, there is a danger of serious injury or death.
- Before designing the system, refer to the relevant standards of the region where this device is to be used and then install this device.
- Safety distance is calculated based on the following equation when a person moves perpendicular (normal intrusion) to the sensing area of the sensor.
(Please check the latest standards for the equation.)

For use in Europe (as per EN 999)

- Equation (1) $\quad \mathrm{D}=\mathrm{K} \times \mathrm{T}+\mathrm{C}$

D: Safety distance (mm)
Minimum required distance between the surface of the sensing area and dangerous part of machine.
K: Intrusion speed of operator's body or objects ($\mathrm{mm} / \mathrm{sec}$.)
Normally, taken as 2,000 ($\mathrm{mm} / \mathrm{sec}$.) for calculation.
[When the floating blanking function is being utilized, a speed of $1,600(\mathrm{~mm} / \mathrm{sec}$.) should be used.]
T : Response time of total equipment (sec.)
T=Tm + Tsf4
Tm: Maximum halt time of device (sec.)
TsF4: Response time of the SF4-AH series 0.011 (sec.)
[0.015 (sec.) if the blanking function has been selected and 0.02 (sec.) for series connections]

C: Additional distance calculated from the size of the minimum sensing object of the sensor (mm)
Note that the value of C is not less than or equal to 0 .
$C=8 \times(d-14)$
d: Minimum sensing object diameter
30 (mm) 1.181 (in)
When using the floating blanking function $C=850$ (mm) 33.465 (in) (constant)

For use in U.S.A. (as per ANSI B11.19)

- Equation (2) $\quad \mathrm{D}=\mathrm{K} \times\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{c}}+\mathrm{Tsf} 4+\mathrm{Tbm}_{\mathrm{b}}\right)+\mathrm{Dpf}$

D: Safety distance (mm)
Minimum required distance between the surface of the sensing area and dangerous part of machine.
K: Intrusion speed \{Recommended value in OSHA is 63 (inch/sec.) [$\fallingdotseq 1,600$ ($\mathrm{mm} / \mathrm{sec}$.) $]\}$
ANSI B11.19 does not define the intrusion speed (K). When determining K, consider possible factors including physical ability of operators.
T_{s} : Halt time calculated from the operation time of the control element (air valve, etc.) (sec.)
T_{c} : Maximum response time of the control circuit required for the brake to function. (sec.)
TsF4: Response time of the SF4-AH series 0.011 (sec.)
[0.015 (sec.) if the blanking function has been selected and 0.02 (sec.) for series connections]

Tbm: Additional halt time tolerance for the brake monitor (sec.)
$\mathrm{T}_{\mathrm{b}} \mathrm{m}=\mathrm{T}_{\mathrm{a}}-\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{c}}\right)$
Ta : Setting time of brake monitor (sec.)
When the machine is not equipped with a break monitor, it is recommended that 20% or more of ($\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{c}}$) is taken as additional halting time.
Dpf: Additional distance calculated from the size of the minimum sensing object of the sensor (mm)
$\mathrm{Dpf}_{\mathrm{pf}}=78.2 \mathrm{~mm} 3.079 \mathrm{in}$
$\left[\begin{array}{c}\mathrm{Dpf} \\ =3.4 \times(\mathrm{d}-0.276)(\mathrm{inch})\end{array}\right.$
$\mathrm{Dpf}_{\mathrm{pf}}=3.4 \times(\mathrm{d}-7)(\mathrm{mm})$
d: Minimum sensing object diameter 1.2 (inch) $\fallingdotseq 30(\mathrm{~mm})$
When the floating blanking function is being utilized,
the minimum detectable sizes of objects will vary. ($\phi 50$ $\phi 1.969 / \phi 70 \phi 2.756 / \phi 90 \phi 3.543 \mathrm{~mm}$ in)
Note that the value of Dpf is not less than or equal to 0 .

Influence of reflective surface

Install the sensor by considering the effect of nearby reflective surfaces and take suitable countermeasures. Failure to do so may cause the sensor not to detect, resulting in serious injury or death.

- Keep the minimum distance given below, between the sensor and a reflective surface.

Side view

Reflective floor
\(\left.$$
\begin{array}{l|l}\hline \begin{array}{l}\text { Distance between } \\
\text { emitter and } \\
\text { receiver, } \mathrm{L}\end{array} & \begin{array}{l}\text { Allowed } \\
\text { setting } \\
\text { distance, D }\end{array}
$$

\hline \begin{array}{l}0.3 to 3 \mathrm{~m}

0.984 to 9.843 \mathrm{ft}\end{array} \& 0.16 \mathrm{~m} 0.525 \mathrm{ft}\end{array}\right]\)\begin{tabular}{l}

\hline | 3 to 7 m |
| :--- |
| 9.843 to 22.966 ft |

$\mathrm{L} \times \tan \theta \quad \theta=3^{\circ}$
$=\mathrm{LX} 0.052(\mathrm{~m}) 0.171(\mathrm{ft})$

\hline
\end{tabular}

Top view

Note: The effective aperture angle for this sensor is $\pm 2.5^{\circ}$ (with $\mathrm{L}>3 \mathrm{~m}$ 9.843 ft) as required by IEC 61496-2 / UL 61496-2. However, install this sensor away from the reflective surfaces, assuming an effective aperture angle of $\pm 3^{\circ}$ to provide for misalignment, etc., during installation.

Mounting

- The minimum bending radius of the cable is R 30 mm R1.181 in Mount the sensor considering the cable bending radius.

Mounting of sensor mounting bracket (MS-SF2-1/3/5)

- Choose the sensor mounting bracket based on the mounting direction (side or rear), and temporarily tighten the brackets with two M3 (length 5 mm 0.197 in) hexagon-socket-head bolts for adjusting the mounting angle. After the beam-axis alignment, tighten then bolts completely. When mounting the sensor, the tightening torque should be $0.6 \mathrm{~N} \cdot \mathrm{~m}$ or less.

<Back mounting>

<Side mounting>

<Center sensor mounting bracket>

Center sensor mounting bracket MS-SF2N-5
(Optional)

Note: Multiple beam channel sensors requiring the intermediate supporting bracket (36 beam channels or more) cannot be mounted on an aluminum frame with the center sensor mounting bracket (MS-SF2N-5).

Mounting of intermediate supporting bracket (MS-SF2N-2/4, MS-SF4A-H2/H4)
(1)Place the retaining plate on the U-shaped rear / side supporting bracket and temporarily tighten them with an M3 (length 10 mm 0.394 in) pan head screw.
(2) Temporarily tighten the L-shaped intermediate supporting bracket to the U-shaped rear / side supporting bracket with an M4 (length 10 mm 0.394 in) hexagon-socket-head bolt.
<Back mounting>

Note: The above figures are only applicable to the MS-SF2N-2/4
The MS-SF4A-H2/H4 have different shapes.
(3)Clamp the sensor main body with the U-shaped rear / side supporting bracket and completely tighten the M3 pan head screw that secures the retaining plate.
(Tightening torque: $0.4 \mathrm{~N} \cdot \mathrm{~m}$ or less)
After the beam-axis alignment, ensure that the M4 hexagon-socket-head bolt, which was used to temporarily attach the L-shaped intermediate supporting bracket to the U-shaped rear / side supporting bracket, is now fully tightened.
(Tightening torque: $1.8 \mathrm{~N} \cdot \mathrm{~m}$ or less)

Note: The above figures show how to mount the emitter onto the intermediate supporting brackets. Note that the top and bottom orientation will be reversed when mounting the receiver to the supporting brackets.
<Back mounting>

SF4-AH

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

SF4-AH $\square(-N)$ Sensor

Assembly dimensions

Mounting drawing for the sensor on which the sensor mounting brackets and the intermediate supporting brackets are mounted.

Emitter

Receiver
<Side mounting>

Model No.	A	B	C	D	E	F	G	H	J	K	L	M	N
SF4-AH8(-N)	190 7.480	237 9.331	$\begin{array}{r} 247 \\ 9.724 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH12(-N)	270 10.630	$\begin{array}{r} 317 \\ 12.480 \end{array}$	$\begin{array}{r} 327 \\ 12.874 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH16(-N)	$\begin{array}{r} 350 \\ 13.780 \end{array}$	$\begin{array}{r} 397 \\ 15.630 \end{array}$	$\begin{array}{r} 407 \\ 16.024 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH20(-N)	$\begin{array}{r} 430 \\ 16.929 \end{array}$	18.777	$\begin{array}{r} 487 \\ 19.173 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH24(-N)	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 557 \\ 21.929 \end{array}$	$\begin{array}{r} 567 \\ 22.323 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH28(-N)	$\begin{array}{r} 590 \\ 23.228 \end{array}$	$\begin{array}{r} 637 \\ 25.079 \end{array}$	$\begin{array}{r} 647 \\ 25.472 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH32(-N)	$\begin{array}{r} 670 \\ 26.378 \end{array}$	$\begin{array}{r} 717 \\ 28.228 \end{array}$	$\begin{array}{r} 727 \\ 28.622 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH36(-N)	$\begin{array}{r} 750 \\ 29.528 \end{array}$	$\begin{array}{r} 797 \\ 31.378 \end{array}$	$\begin{array}{r} 807 \\ 31.772 \\ \hline \end{array}$	$\begin{array}{r} 350 \\ 13.780 \end{array}$	-	-	-	-	$\begin{array}{r} 440 \\ 17.323 \end{array}$	-	-	-	-
SF4-AH40(-N)	32.630	$\begin{array}{r} 877 \\ 34.527 \end{array}$	$\begin{array}{r} 887 \\ 34.921 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	-	-	-	-	$\begin{array}{r} 480 \\ 18.898 \end{array}$	-	-	-	-
SF4-AH48(-N)	$\begin{array}{r} 990 \\ 38.976 \end{array}$	$\begin{array}{r} 1,037 \\ 40.827 \end{array}$	$\begin{array}{r} 1,047 \\ 41.220 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	-	-	-	$\begin{array}{r} 480 \\ 18.898 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	-	-	-
SF4-AH56(-N)	$\begin{array}{r} 1,150 \\ 45.276 \end{array}$	$\begin{array}{r} 1,197 \\ 47.126 \end{array}$	$\begin{array}{r} 1,207 \\ 47.520 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	-	-	$\begin{array}{r} 480 \\ 18.898 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	-	-
SF4-AH64(-N)	$\begin{array}{r} 1,310 \\ 51.575 \end{array}$	$\begin{array}{r} 1,357 \\ 53.425 \end{array}$	$\begin{array}{r} 1,367 \\ 53.819 \end{array}$	$\begin{array}{r} 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	-	-	$\begin{array}{r} 560 \\ 22.047 \end{array}$	$\begin{array}{r} 720 \\ 28.346 \end{array}$	$\begin{array}{r} 880 \\ 34.646 \end{array}$	-	-
SF4-AH72(-N)	1,470	$\begin{array}{r} 1,517 \\ 59: 724 \end{array}$	$\begin{array}{r} 1,527 \\ 60.118 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	-	-	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	-	-
SF4-AH80(-N)	$\begin{array}{r} 1,630 \\ 64.173 \end{array}$	$\begin{array}{r} 1,677 \\ 66.023 \end{array}$	$\begin{array}{r} 1,687 \\ 66.417 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \\ \hline \end{array}$	-	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \end{array}$	-
SF4-AH88(-N)	$\begin{array}{r} 1,790 \\ 70.472 \end{array}$	$\begin{array}{r} 1,837 \\ 72.323 \end{array}$	$\begin{array}{r} 1,847 \\ 72.716 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \end{array}$	$\begin{array}{r} 1,280 \\ 50.394 \end{array}$
SF4-AH96(-N)	$\begin{array}{r} 1,950 \\ 76.772 \end{array}$	$\begin{array}{r} 1,997 \\ 78.622 \end{array}$	$\begin{array}{r} 2,007 \\ 79.016 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \end{array}$	1,110 43.701	1,270 50.000	$\begin{array}{r} 720 \\ 28.346 \end{array}$	$\begin{array}{r} 880 \\ 34.646 \end{array}$	1,040 40.945	17,200	1,360 53.543

Assembly dimensions

Mounting drawing for the sensor on which the sensor mounting brackets and the intermediate supporting brackets are mounted.

Emitter

Receiver

Emitter
Receiver

Model No.	A	B	C	D	E	F	G	H	J	K	L	M	N
SF4-AH8-H	$\begin{array}{r} 190 \\ 7.480 \\ \hline \end{array}$	$\begin{array}{r} 237 \\ 9.331 \end{array}$	$\begin{array}{r} 247 \\ 9.724 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH12-H	$\begin{array}{r} 270 \\ 10.630 \\ \hline \end{array}$	$\begin{array}{r} 317 \\ 12.480 \end{array}$	$\begin{array}{r} 327 \\ 12.874 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH16-H	$\begin{array}{r} 350 \\ 13.780 \end{array}$	$\begin{array}{r} 397 \\ 15.630 \end{array}$	$\begin{array}{r} 407 \\ 16.024 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH20-H	$\begin{array}{r} 430 \\ 16.929 \end{array}$	18.7779	$\begin{array}{r} 487 \\ 19.173 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH24-H	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 557 \\ 21.929 \end{array}$	$\begin{array}{r} 567 \\ 22.323 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH28-H	$\begin{array}{r} 590 \\ 23.228 \end{array}$	$\begin{array}{r} 637 \\ 25.079 \end{array}$	$\begin{array}{r} 647 \\ 25.472 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH32-H	$\begin{array}{r} 670 \\ 26.378 \end{array}$	$\begin{array}{r} 717 \\ 28.228 \end{array}$	$\begin{array}{r} 727 \\ 28.622 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH36-H	$\begin{array}{r} 750 \\ 29.528 \end{array}$	$\begin{array}{r} 797 \\ 31.378 \end{array}$	$\begin{array}{r} 807 \\ 31.772 \end{array}$	$\begin{array}{r} 350 \\ 13.780 \end{array}$	-	-	-	-	$\begin{array}{r} 440 \\ 17.323 \end{array}$	-	-	-	-
SF4-AH40-H	$\begin{array}{r} 830 \\ 32.677 \end{array}$	$\begin{array}{r} 877 \\ 34.527 \end{array}$	$\begin{array}{r} 887 \\ 34.921 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	-	-	-	-	$\begin{array}{r} 480 \\ 18.898 \\ \hline \end{array}$	-	-	-	-
SF4-AH48-H	$\begin{array}{r} 990 \\ 38.976 \end{array}$	$\begin{array}{r} 1,037 \\ 40.827 \\ \hline \end{array}$	$\begin{array}{r} 1,047 \\ 41.220 \\ \hline \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	-	-	-	$\begin{array}{r} 480 \\ 18.898 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	-	-	-
SF4-AH56-H	$\begin{array}{r} 1,150 \\ 45.276 \\ \hline \end{array}$	$\begin{array}{r} 1,197 \\ 47.126 \\ \hline \end{array}$	$\begin{array}{r} 1,207 \\ 47.520 \\ \hline \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \\ \hline \end{array}$	-	-	$\begin{array}{r} 480 \\ 18.898 \\ \hline \end{array}$	$\begin{array}{r} 640 \\ 25.197 \\ \hline \end{array}$	$\begin{array}{r} 800 \\ 31.496 \\ \hline \end{array}$	-	-
SF4-AH64-H	$\begin{array}{r} 1,310 \\ 51.575 \end{array}$	$\begin{array}{r} 1,357 \\ 53.425 \end{array}$	$\begin{array}{r} 1,367 \\ 53.819 \\ \hline \end{array}$	$\begin{array}{r} 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	-	-	$\begin{array}{r} 560 \\ 22.047 \end{array}$	$\begin{array}{r} 720 \\ 28.346 \end{array}$	$\begin{array}{r} 880 \\ 34.646 \end{array}$	-	-
SF4-AH72-H	$\begin{array}{r} 1,470 \\ 57.874 \end{array}$	$\begin{array}{r} 1,517 \\ 59: 724 \end{array}$	$\begin{array}{r} 1,527 \\ 60.118 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	-	-	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	-	-
SF4-AH80-H	$\begin{array}{r} 1,630 \\ 64.173 \\ \hline \end{array}$	$\begin{array}{r} 1,677 \\ 66.023 \\ \hline \end{array}$	$\begin{array}{r} 1,687 \\ 66.417 \\ \hline \end{array}$	$\begin{array}{r} 550 \\ 21.654 \\ \hline \end{array}$	$\begin{array}{r} 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \\ \hline \end{array}$	-	$\begin{array}{r} 640 \\ 25.197 \\ \hline \end{array}$	$\begin{array}{r} 800 \\ 31.496 \\ \hline \end{array}$	$\begin{array}{r} 960 \\ 37.795 \\ \hline \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \\ \hline \end{array}$	-
SF4-AH88-H	$\begin{array}{r} 1,790 \\ 70.472 \end{array}$	$\begin{array}{r} 1,837 \\ 72.323 \end{array}$	$\begin{array}{r} 1,847 \\ 72.716 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \end{array}$	$\begin{array}{r} 1,280 \\ 50,394 \end{array}$
SF4-AH96-H	$\begin{array}{r} 1,950 \\ 76.772 \\ \hline \end{array}$	$\begin{array}{r} 1,997 \\ 78.622 \\ \hline \end{array}$	$\begin{array}{r} 2,007 \\ 79.016 \\ \hline \end{array}$	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	$\begin{array}{r} 1,110 \\ 43.701 \\ \hline \end{array}$	$\begin{array}{r} 1,270 \\ 50.000 \\ \hline \end{array}$	$\begin{array}{r} 720 \\ 28.346 \\ \hline \end{array}$	$\begin{array}{r} 880 \\ 34.646 \\ \hline \end{array}$	$\begin{array}{r} 1,040 \\ 40.945 \\ \hline \end{array}$	$\begin{array}{r} 1,200 \\ 47.244 \\ \hline \end{array}$	$\begin{array}{r} 1,360 \\ 53.543 \\ \hline \end{array}$

SF4-AH

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

SF4-AH $\square(-N)$ S4-AH- ${ }^{-1}$
 Sensor

When using cable for series connection
Mounting drawing for SF4-AH $\square(-\mathbf{N})$ on which the cables for series connection, the mounting brackets and the intermediate supporting brackets are mounted. When utilizing SF4-AH $\square-\mathbf{H}$, although the shape is different, all dimensions listed in the table below are exactly the same as those of SF4-AH $\square(-\mathbf{N})$.

Model No.	A	P	Q	R	S	T	U	V	W	X	Y	Z	a
SF4-AH8(-N/H)	$\begin{array}{r} 190 \\ 7.480 \end{array}$	$\begin{array}{r} 220 \\ 8.661 \end{array}$	$\begin{array}{r} 230 \\ 9.055 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH12(-N/H)	$\begin{array}{r} 270 \\ 10.630 \end{array}$	$\begin{array}{r} 300 \\ 11.811 \end{array}$	$\begin{array}{r} 310 \\ 12.205 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH16(-N/H)	$\begin{array}{r} 350 \\ 13.780 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH20(-N/H)	$\begin{array}{r} 430 \\ 16.929 \end{array}$	$\begin{array}{r} 460 \\ 18.110 \end{array}$	$\begin{array}{r} 470 \\ 18.504 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH24(-N/H)	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH28(-N/H)	$\begin{array}{r} 590 \\ 23.228 \end{array}$	$\begin{array}{r} 620 \\ 24.409 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH32(-N/H)	$\begin{array}{r} 670 \\ 26.378 \end{array}$	$\begin{array}{r} 700 \\ 27.559 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	-	-	-	-	-	-	-	-	-	-
SF4-AH36(-N/H)	$\begin{array}{r} 750 \\ 29.528 \end{array}$	$\begin{array}{r} 780 \\ 30.709 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 340 \\ 13.386 \end{array}$	-	-	-	-	$\begin{array}{r} 430 \\ 16.929 \end{array}$	-	-	-	-
SF4-AH40(-N/H)	$\begin{array}{r} 830 \\ 32.677 \end{array}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \\ \hline \end{array}$	-	-	-	-	$\begin{array}{r} 470 \\ 18.504 \end{array}$	-	-	-	-
SF4-AH48(-N/H)	$\begin{array}{r} 990 \\ 38.976 \end{array}$	$\begin{array}{r} 1,020 \\ 40.157 \\ \hline \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \\ \hline \end{array}$	$\begin{array}{r} 380 \\ 14.961 \\ \hline \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	-	-	-	$\begin{array}{r} 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	-	-	-
SF4-AH56(-N/H)	$\begin{array}{r} 1,150 \\ 45.276 \end{array}$	$\begin{array}{r} 1,180 \\ 46.457 \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	$\begin{array}{r} 700 \\ 27.559 \end{array}$	-	-	$\begin{array}{r} 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	-	-
SF4-AH64(-N/H)	$\begin{array}{r} 1,310 \\ 51.575 \end{array}$	$\begin{array}{r} 1,340 \\ 52.756 \end{array}$	$\begin{array}{r} 1,350 \\ 53.150 \end{array}$	$\begin{array}{r} 460 \\ 18.110 \end{array}$	$\begin{array}{r} 620 \\ 24.409 \end{array}$	$\begin{array}{r} 780 \\ 30.709 \end{array}$	-	-	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	-	-
SF4-AH72(-N/H)	$\begin{array}{r} 1,470 \\ 57.874 \\ \hline \end{array}$	$\begin{array}{r} 1,500 \\ 59.055 \\ \hline \end{array}$	$\begin{array}{r} 1,510 \\ 59.449 \\ \hline \end{array}$	$\begin{array}{r} 540 \\ 21.260 \\ \hline \end{array}$	$\begin{array}{r} 700 \\ 27.559 \\ \hline \end{array}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	-	-	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	-	-
SF4-AH80(-N/H)	$\begin{array}{r} 1,630 \\ 64.173 \\ \hline \end{array}$	$\begin{array}{r} 1,660 \\ 65.354 \\ \hline \end{array}$	$\begin{array}{r} 1,670 \\ 65.748 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	$\begin{array}{r} 700 \\ 27.559 \\ \hline \end{array}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	$\begin{array}{r} 1,020 \\ 40.157 \end{array}$	-	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	$\begin{array}{r} 950 \\ 37.402 \end{array}$	$\begin{array}{r} 1,110 \\ 43.701 \end{array}$	-
SF4-AH88(-N/H)	$\begin{array}{r} 1,790 \\ 70.472 \end{array}$	$\begin{array}{r} 1,820 \\ 71.653 \end{array}$	$\begin{array}{r} 1,830 \\ 72.047 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	$\begin{array}{r} 700 \\ 27.559 \end{array}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	$\begin{array}{r} 1,020 \\ 40.157 \end{array}$	$\begin{array}{r} 1,180 \\ 46.457 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \end{array}$	$\begin{array}{r} 1,110 \\ 43.701 \end{array}$	$\begin{array}{r} 1,270 \\ 50.000 \end{array}$
SF4-AH96(-N/H)	$\begin{array}{r} 1,950 \\ 76.772 \\ \hline \end{array}$	$\begin{array}{r} 1,980 \\ 77.953 \\ \hline \end{array}$	$\begin{array}{r} 1,990 \\ 78.346 \\ \hline \end{array}$	$\begin{array}{r} 620 \\ 24.409 \\ \hline \end{array}$	$\begin{array}{r} 780 \\ 30.709 \\ \hline \end{array}$	$\begin{array}{r} 940 \\ 37.008 \\ \hline \end{array}$	$\begin{array}{r} 1,100 \\ 43.307 \\ \hline \end{array}$	$\begin{array}{r} 1,260 \\ 49.606 \\ \hline \end{array}$	$\begin{array}{r} 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \\ \hline \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \\ \hline \end{array}$	$\begin{array}{r} 1,350 \\ 53.150 \\ \hline \end{array}$

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

SF4-AH $\square(-N)$ Sensor

When mounting front protection unit

Mounting drawing for the sensor on which the U-shaped intermediate supporting brackets and the front protection unit are mounted.

Model No.	A	c	d	D	E	F	G	H	J	K	L	M	N	e	f
SF4-AH8(-N)	190 7.480	9.803	$\begin{array}{\|c\|} \hline 269 \\ 10.599 \\ \hline \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH12(-N)	270 10.630	329 12.953	$\begin{aligned} & 13.349 \\ & \hline \end{aligned}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH16(-N)	13.780	$\begin{array}{r} 409 \\ 16.102 \end{array}$	$\begin{array}{r} 429 \\ 16.890 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH20(-N)	430 16.929	$\begin{array}{r} 489 \\ 19.252 \end{array}$	$\begin{array}{r} 5099 \\ 20.039 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH24(-N)	20.079	$\begin{array}{r} 569 \\ 2.402 \\ \hline \end{array}$	$\begin{array}{r} 589 \\ 23.189 \\ \hline \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH28(-N)	23.228	$\begin{array}{r} 649 \\ 25.551 \\ \hline \end{array}$	$\begin{array}{r} \hline 669 \\ 26.339 \\ \hline \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH32(-N)	670 26.378	$\begin{array}{r} 729 \\ 28.701 \end{array}$	$\begin{array}{r} 749 \\ 29.488 \\ \hline \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH36(-N)	29.528	$\begin{aligned} & 809 \\ & 31.850 \end{aligned}$	$\begin{aligned} & 829 \\ & 32.638 \end{aligned}$	$\begin{aligned} & 1350 \\ & 13.780 \end{aligned}$	-	-	-	-	$\begin{array}{r} 440 \\ 17.323 \\ \hline \end{array}$	-	-	-	-	-	-
SF4-AH40(-N)	83 3277	$\begin{array}{r} 889 \\ \hline 35.000 \\ \hline \end{array}$	$\begin{array}{r} 9509 \\ \hline \end{array}$	$\begin{array}{r} 390 \\ 15.354 \\ \hline \end{array}$	-	-	-	-	$\begin{array}{r} 480 \\ 18.898 \\ \hline \end{array}$	-	-	-	-	$\begin{array}{r} 520 \\ 20.472 \\ \hline \end{array}$	$\begin{array}{r} 510 \\ 20.079 \\ \hline \end{array}$
SF4-AH48(-N)	38.990	1,049	$\begin{array}{r} 1,069 \\ 42.087 \end{array}$	15.390	$\begin{array}{r} 550 \\ 21.654 \end{array}$	-	-	-	$\begin{array}{r} 480 \\ \hline 18.898 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 640 \\ 25.197 \end{array}$	-	-	-	$\begin{array}{r} 520 \\ 20.472 \end{array}$	$\begin{array}{\|r} \hline 510 \\ 20.079 \end{array}$
SF4-AH56(-N)	1,150	$\begin{array}{r} 1,209 \\ \hline 4,599 \end{array}$	$\begin{array}{r} 1,229 \\ 48,386 \end{array}$	$\begin{array}{r} 390 \\ 15.354 \end{array}$	$\begin{array}{r} .550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ \hline 27.953 \\ \hline \end{array}$	-	-	$\begin{array}{r} 480 \\ 18.898 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{aligned} & 800 \\ & 31.496 \end{aligned}$	-	-	$\begin{aligned} & 680 \\ & 26.772 \end{aligned}$	$\begin{array}{r} 670 \\ 26.378 \end{array}$
SF4-AH64(-N)	51,570	$\begin{array}{r} 1,369 \\ 53.898 \end{array}$	$\begin{array}{r} 1,389 \\ 54.685 \end{array}$	$\begin{array}{\|r\|} \hline 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	-	-	$\begin{array}{r} 560 \\ 22.047 \end{array}$	$\begin{array}{r} 720 \\ 28.346 \end{array}$	$\begin{array}{r} 880 \\ 34.646 \end{array}$	-	-	$\begin{array}{r} 760 \\ 29.921 \end{array}$	$\begin{array}{r} 750 \\ 29.528 \end{array}$
SF4-AH72(-N)	$\begin{array}{r} 1,470 \\ 57.874 \end{array}$	1,529 60.197	$\begin{array}{r} 1,549 \\ 60.984 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \\ \hline \end{array}$	$\begin{aligned} & 710 \\ & 27.953 \end{aligned}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	-	-	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 8180 \\ 31.496 \end{array}$	$\begin{aligned} & 37.960 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 840 \\ & 33.077 \end{aligned}$	$\begin{aligned} & \hline 830 \\ & 32.677 \end{aligned}$
SF4-AH80(-N)	$\begin{array}{r} 1,630 \\ 64.173 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,689 \\ 66.496 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,709 \\ 67,283 \\ \hline \end{array}$	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \end{array}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \\ \hline \end{array}$	-	$\begin{array}{r} 640 \\ 25.197 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 800 \\ 31.496 \\ \hline \end{array}$	$\begin{array}{r} 960 \\ 37.795 \\ \hline \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \end{array}$	-	$\begin{array}{r} 840 \\ 33.071 \\ \hline \end{array}$	$\begin{array}{\|r} 830 \\ \hline 32.677 \\ \hline \end{array}$
SF4-AH88(-N)	$\begin{aligned} & 1,790 \\ & 70.472 \end{aligned}$	$\begin{array}{\|r\|} \hline 1,849 \\ 72.795 \end{array}$	$\begin{array}{\|l\|} \hline 1,869 \\ 73.583 \\ \hline \end{array}$	$\begin{array}{r} 550 \\ 21.654 \\ \hline \end{array}$	$\begin{aligned} & 710 \\ & 27.953 \end{aligned}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	$\begin{array}{r} 1,030 \\ 40.551 \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \end{array}$	$\begin{array}{r} 640 \\ 25.197 \end{array}$	$\begin{array}{r} 81800 \\ 31.496 \end{array}$	$\begin{array}{r} 960 \\ 37.795 \end{array}$	$\begin{array}{r} 1,120 \\ 44.094 \end{array}$	$\begin{array}{\|r} 1,280 \\ 50,394 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ 39: 370 \end{array}$	$\begin{array}{r} 990 \\ \hline 8.976 \end{array}$
SF4-AH96(-N)	1,950	2, ${ }^{2,009}$	79,889	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,110 \\ 43.701 \\ \hline \end{array}$	1,270 50.000	$\begin{array}{r} 720 \\ 28.346 \end{array}$	880 34.646	$\begin{array}{r} 1,040 \\ 40,945 \end{array}$	17,200	$\begin{array}{r} 1,360 \\ 53.543 \\ \hline \end{array}$	1,080 42.520	1,070 42,126

SF4-AH

DIMENSIONS (Unit: mm in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

SF4-AH $\square(-N)$ Sensor

When mounting front protection unit and using cable for series connection
Mounting drawing for the sensor on which the U-shaped intermadiate supporting brackets, the front protection unit and the cables for series connection are mounted.

Model No.	A	g	h	R	S	T	U	V	W	X	Y	Z	a	i	j
SF4-AH8(-N)	190 7.480	$\begin{array}{r} 232 \\ 9.134 \end{array}$	$\begin{array}{r} 252 \\ 9.921 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH12(-N)	(270	$\begin{array}{r} 312 \\ 12.283 \end{array}$	$\begin{array}{r} 332 \\ 13.071 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH16(-N)	$\begin{aligned} & 350 \\ & 13.780 \end{aligned}$	$\begin{array}{r} 392 \\ 15.433 \end{array}$	$\begin{array}{r} 412 \\ 16.220 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH20(-N)	$\begin{array}{r} 430 \\ 16.929 \end{array}$	$\begin{array}{r} 472 \\ 18.583 \end{array}$	$\begin{array}{r} 492 \\ 19.370 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH24(-N)	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 552 \\ 21.732 \\ \hline \end{array}$	$\begin{array}{r} 572 \\ 22.520 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH28(-N)	$\begin{array}{r} 590 \\ 23.228 \\ \hline \end{array}$	$\begin{array}{r} 632 \\ 24.882 \end{array}$	$\begin{array}{r} 652 \\ 25.669 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH32(-N)	$\begin{array}{r} 670 \\ 26.378 \\ \hline \end{array}$	$\begin{array}{r} 712 \\ 28.031 \end{array}$	$\begin{array}{r} 732 \\ 28.819 \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-
SF4-AH36(-N)	$\begin{array}{r} 750 \\ 29.528 \\ \hline \end{array}$	$\begin{array}{r} 792 \\ 31.181 \end{array}$	$\begin{array}{r} 812 \\ 31.968 \end{array}$	$\begin{array}{r} 340 \\ 13.386 \\ \hline \end{array}$	-	-	-	-	$\begin{array}{r} 430 \\ 16.929 \end{array}$	-	-	-	-	-	-
SF4-AH40(-N)	$\begin{array}{r} 830 \\ 32.677 \end{array}$	$\begin{array}{r} 872 \\ 34.331 \end{array}$	$\begin{array}{r} 892 \\ 35.118 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \end{array}$	-	-	-	-	$\begin{array}{r} 470 \\ 18.504 \end{array}$	-	-	-	-	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 500 \\ 19.685 \end{array}$
SF4-AH48(-N)	$\begin{array}{r} 990 \\ 38.976 \end{array}$	$\begin{array}{r} 1,032 \\ 40,630 \end{array}$	$\begin{array}{r} 1,052 \\ 41.417 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	-	-	-	$\begin{array}{\|r\|} \hline 470 \\ 18.504 \end{array}$	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	-	-	-	$\begin{array}{r} 510 \\ 20.079 \end{array}$	$\begin{array}{r} 500 \\ 19.685 \end{array}$
SF4-AH56(-N)	$\begin{array}{r} 1,150 \\ 45.276 \end{array}$	$\begin{array}{r} 1,192 \\ 46.929 \end{array}$	$\begin{array}{r} 1,212 \\ 47.716 \end{array}$	$\begin{array}{r} 380 \\ 14.961 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \end{array}$	$\begin{array}{r} 700 \\ 27.559 \\ \hline \end{array}$	-	-	$\begin{array}{\|r\|} \hline 470 \\ 18.504 \\ \hline \end{array}$	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	-	-	$\begin{array}{\|r\|} \hline 670 \\ 26.378 \\ \hline \end{array}$	25.984
SF4-AH64(-N)	$\begin{array}{r} 1,310 \\ 51.575 \end{array}$	$\begin{array}{r} 1,352 \\ 53.228 \\ \hline \end{array}$	$\begin{array}{r} 1,372 \\ 54.016 \end{array}$	$\begin{array}{r} 460 \\ 18.110 \end{array}$	$\begin{array}{r} 620 \\ 24.409 \end{array}$	$\begin{array}{r} 780 \\ \hline 30.709 \\ \hline \end{array}$	-	-	$\begin{array}{r} 550 \\ 21.654 \end{array}$	$\begin{array}{r} 710 \\ \hline 27.953 \\ \hline \end{array}$	$\begin{array}{r} 870 \\ 34.252 \\ \hline \end{array}$	-	-	$\begin{array}{r} 750 \\ 29.528 \end{array}$	$\begin{array}{r} 740 \\ 29.134 \\ \hline \end{array}$
SF4-AH72(-N)	$\begin{array}{r} 1,470 \\ 57.874 \end{array}$	$\begin{array}{r} 1,512 \\ 59.527 \end{array}$	$\begin{array}{r} 1,532 \\ 60.315 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \\ \hline \end{array}$	$\begin{array}{r} 700 \\ 27.559 \end{array}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	-	-	$\begin{array}{\|r} \hline 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \end{array}$	-	-	$\begin{array}{r} 830 \\ 32.677 \end{array}$	$\begin{array}{r} 820 \\ 32.283 \end{array}$
SF4-AH80(-N)	$\begin{array}{r} 1,630 \\ 64.173 \\ \hline \end{array}$	$\begin{array}{r} 1,672 \\ 65.827 \end{array}$	$\begin{array}{r} 1,692 \\ 66.614 \end{array}$	$\begin{array}{r} 540 \\ 21.260 \\ \hline \end{array}$	$\begin{aligned} & 700 \\ & 27.559 \end{aligned}$	$\begin{array}{r} 860 \\ 33.858 \end{array}$	$\begin{array}{r} 1,020 \\ 40.157 \\ \hline \end{array}$	-	$\begin{array}{\|r} \hline 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \end{array}$	$\begin{array}{r} 1,110 \\ 43.701 \end{array}$	-	$\begin{array}{r} 830 \\ 32.677 \end{array}$	$\begin{array}{r} 820 \\ 32.283 \end{array}$
SF4-AH88(-N)	$\begin{array}{\|r} 1,790 \\ 70,472 \\ \hline \end{array}$	$\begin{array}{r} 1,832 \\ 72.126 \\ \hline \end{array}$	$\begin{array}{r} 1,852 \\ 72.913 \end{array}$	$\begin{array}{r} \hline 540 \\ 21.260 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 700 \\ 27.559 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 860 \\ 33.858 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,020 \\ 40.157 \\ \hline \end{array}$	$\begin{array}{r} 1,180 \\ 46.457 \\ \hline \end{array}$	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 790 \\ 31.102 \end{array}$	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,110 \\ 43.701 \\ \hline \end{array}$	$\begin{array}{\|r} 1,270 \\ 50.000 \\ \hline \end{array}$	$\begin{array}{r} 990 \\ \hline 38.976 \\ \hline \end{array}$	$\begin{array}{r} 980 \\ 38.583 \end{array}$
SF4-AH96(-N)	$\begin{array}{r} 1,950 \\ 76.772 \\ \hline \end{array}$	$\begin{array}{r} 1,992 \\ 78.425 \\ \hline \end{array}$	$\begin{array}{r} 2,012 \\ 79.212 \end{array}$	$\begin{array}{r} 620 \\ 24.409 \\ \hline \end{array}$	$\begin{array}{r} 780 \\ 30.709 \\ \hline \end{array}$	$\begin{array}{r} 940 \\ 37.008 \end{array}$	$\begin{array}{r} 1,100 \\ 43.307 \\ \hline \end{array}$	$\begin{array}{r} 1,260 \\ 49.606 \end{array}$	$\begin{array}{r} 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 870 \\ 34.252 \end{array}$	$\begin{array}{r} 1,030 \\ 40,551 \\ \hline \end{array}$	$\begin{array}{r} 1,190 \\ 46.850 \end{array}$	$\begin{array}{r} 1,350 \\ 53.150 \end{array}$	$\begin{array}{r} 1,070 \\ 42.126 \end{array}$	$\begin{array}{r} 1,060 \\ 41.732 \\ \hline \end{array}$

Safety relay unit (for PNP output type light curtain)(Optional)

MS-SF2N-1
Rear mounting bracket (Accessory)

SF-HC Handy-controller (Optional)

SF-IND-2
Large display unit for light curtain (Optional)
 (SPCC)(Black chromate)
Case ... POM
Cover ... Polycarbonate

MS-SF2N-2 U-shaped rear mounting intermediate supporting bracket for SF4-AH $\square(-\mathrm{N})$ [Accessory for SF4-AH $\square(-\mathrm{N})$ having 36 beam channels or more]

Retaining plate

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Set of 2 pcs. each of U-shaped rear supporting bracket and retaining plate (Note)
Note: MS-SF2N-2 (U-shaped rear mounting intermediate supporting bracket) is attached with the following sensors. The number of attached U-shaped rear mounting intermediate supporting brackets is different depending on the sensor as follows.
SF4-AH36(-N), SF4-AH40(-N): 1 set
SF4-AH48(-N): 2 sets
SF4-AH56(-N), SF4-AH64(-N), SF4-AH72(-N): 3 sets
SF4-AH80(-N): 4 sets
SF4-AH88(-N), SF4-AH96(-N): 5 sets

SF4-AH

DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

MS-SF4A-H2 U-shaped rear mounting intermediate supporting bracket for SF4-AH■-H (Accessory for SF4-AH■-H having 36 beam channels or more)

MS-SF2N-L L-shaped intermediate supporting bracket
[Accessory for SF4-AHI(-NH) having 36 beam channels or more]

Note: MS-SF2N-L (L-shaped intermediate supporting bracket) is attached with the following sensors. The number of attached L-shaped intermediate supporting brackets is different depending on the sensor as follows SF4-AH36(-N/H), SF4-AH40(-N/H): 1 set SF4-AH48(N/H): 2 sets
SF4-AH56 (-N/H), SF4-AH64(-N/H), SF4-AH72(-N/H): 3 sets SF4-AH80 (N/H): 4 sets SF4-AH80 (N/H): 4 SetS

Retaining plate

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Set of 2 pcs. each of U-shaped rear supporting bracket and retaining plate (Note)
Note: MS-SF4A-H2 (U-shaped rear mounting intermediate supporting bracket) is attached with the following sensors. The number of attached U-shaped rear mounting intermediate supporting brackets is different depending on the sensor as follows.
SF4-AH36-H, SF4-AH40-H: 1 set
SF4-AH48-H: 2 sets
SF4-AH56-H, SF4-AH64-H, SF4-AH72-H: 3 sets
SF4-AH80-H: 4 sets
SF4-AH88-H, SF4-AH96-H: 5 sets

MS-SF2N-5 Center sensor mounting bracket (Optional)

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Four bracket set

MS-SF2N-3 Side mounting bracket (Optional)

MS-SF2N-4

U-shaped side mounting intermediate supporting bracket for SF4-AH $\square(-\mathrm{N})$ (Optional)

U-shaped side supporting bracket

Retaining plate

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Set of 2 pcs. each of U-shaped side supporting bracket and retaining plate (Note)
Note: MS-SF2N-4 (U-shaped side mounting intermediate supporting bracket) is attached with the following sensors. The number of attached U-shaped side mounting intermediate supporting bracket is different depending on the sensor as follows.
SF4-AH36(-N), SF4-AH40(-N): 1 set
SF4-AH48(-N): 2 sets
SF4-AH56(-N), SF4-AH64(-N), SF4-AH72(-N): 3 sets
SF4-AH56 (-N,$~ S F 4-A$
SF4-AH80 $(-\mathrm{N}): 4$ sets
SF4-AH88(-N), SF4-AH96(-N): 5 sets

MS-SF4A-H4 U-shaped side mounting intermediate supporting bracket for SF4-AH \square-H (Optional)

U-shaped side supporting bracket

Retaining plate

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Set of 2 pcs. each of U-shaped side supporting bracket and retaining plate (Note)
Note: MS-SF4A-H4 (U-shaped side mounting intermediate supporting bracket) is attached with the following sensors. The number of attached U-shaped side mounting intermediate supporting bracket is different depending on the sensor as follows.
SF4-AH36-H, SF4-AH40-H: 1 set
SF4-AH48-H:2 sets
SF4-AH56-H, SF4-AH64-H, SF4-AH72-H: 3 sets
SF4-AH80-H: 4 sets
SF4-AH88-H, SF4-AH96-H: 5 sets

SF4-AH

DIMENSIONS (Unit: $\mathbf{m m}$ in) The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

MC-SF4AH- $\square \quad$ Front protection unit (Optional)

Protection bar mounting bracket

<Right side-mounting of sensors>

Material: Cold rolled carbon steel (SPCC)(Black chromate)
Protection bar intermediate supporting bracket

L-shaped rear mounting intermediate supporting bracket for front protection unit MS-SF4A-L2
L-shaped side mounting intermediate supporting bracket for front protection unit MS-SF4A-L4

Note: The number of MS-SF4A-L4 (L-shaped side mounting intermediate supporting bracket for front protection unit) is different depending on the product as follows.
MC-SF4AH-36, MC-SF4AH-40: 1 pc.
MC-SF4AH-48: 2 pCs
MC-SF4AH-56, MC-SF4AH-64, MC-SF4AH-72: 3 pcs
MC-SF4AH-80: 4 pcs
MC-SF4AH-88, MC-SF4AH-96: 5 pcs.

Two M5 (length 20 mm 0.787 in) hexagon-socket-head bolts, four M3 (length 6 mm 0.236 in) hexagon-socket-head bolts, M8 (length 16 mm 0.630 in) hexagon-headed bolt (Note 2) and two spacers are attached.
2) The number of M8 (length 16 mm 0.630 in) hexagon-socket-head bolt is different depending on the product as follows.

MC-SF4AH-8/12/16/20/24/28/32: 2 pcs.
MC-SF4AH-40: 4 pCs
MC-SF4AH-80: 7 pcs.
MC-SF4AH-36: 3 pcs.
MC-SF4AH-48: 5 pcs
MC-SF4AH-88/96: 8 pcs

[^0]: MS-SF2N-1 (Rear sensor mounting bracket): 1 set for emitter and receiver, MS-SF2N-2 (U-shaped rear mounting intermediate supporting

